You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
	
	
		
			847 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
		
		
			
		
	
	
			847 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
| 
								 
											3 years ago
										 
									 | 
							
								/***********************************************************************
							 | 
						||
| 
								 | 
							
								 * Software License Agreement (BSD License)
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Copyright 2008-2011  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
							 | 
						||
| 
								 | 
							
								 * Copyright 2008-2011  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * THE BSD LICENSE
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Redistribution and use in source and binary forms, with or without
							 | 
						||
| 
								 | 
							
								 * modification, are permitted provided that the following conditions
							 | 
						||
| 
								 | 
							
								 * are met:
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * 1. Redistributions of source code must retain the above copyright
							 | 
						||
| 
								 | 
							
								 *    notice, this list of conditions and the following disclaimer.
							 | 
						||
| 
								 | 
							
								 * 2. Redistributions in binary form must reproduce the above copyright
							 | 
						||
| 
								 | 
							
								 *    notice, this list of conditions and the following disclaimer in the
							 | 
						||
| 
								 | 
							
								 *    documentation and/or other materials provided with the distribution.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
							 | 
						||
| 
								 | 
							
								 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
							 | 
						||
| 
								 | 
							
								 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
							 | 
						||
| 
								 | 
							
								 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
							 | 
						||
| 
								 | 
							
								 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
							 | 
						||
| 
								 | 
							
								 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
							 | 
						||
| 
								 | 
							
								 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
							 | 
						||
| 
								 | 
							
								 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
							 | 
						||
| 
								 | 
							
								 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
							 | 
						||
| 
								 | 
							
								 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
							 | 
						||
| 
								 | 
							
								 *************************************************************************/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
							 | 
						||
| 
								 | 
							
								#define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//! @cond IGNORED
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <algorithm>
							 | 
						||
| 
								 | 
							
								#include <map>
							 | 
						||
| 
								 | 
							
								#include <limits>
							 | 
						||
| 
								 | 
							
								#include <cmath>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "general.h"
							 | 
						||
| 
								 | 
							
								#include "nn_index.h"
							 | 
						||
| 
								 | 
							
								#include "dist.h"
							 | 
						||
| 
								 | 
							
								#include "matrix.h"
							 | 
						||
| 
								 | 
							
								#include "result_set.h"
							 | 
						||
| 
								 | 
							
								#include "heap.h"
							 | 
						||
| 
								 | 
							
								#include "allocator.h"
							 | 
						||
| 
								 | 
							
								#include "random.h"
							 | 
						||
| 
								 | 
							
								#include "saving.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace cvflann
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct HierarchicalClusteringIndexParams : public IndexParams
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    HierarchicalClusteringIndexParams(int branching = 32,
							 | 
						||
| 
								 | 
							
								                                      flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
							 | 
						||
| 
								 | 
							
								                                      int trees = 4, int leaf_size = 100)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        (*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL;
							 | 
						||
| 
								 | 
							
								        // The branching factor used in the hierarchical clustering
							 | 
						||
| 
								 | 
							
								        (*this)["branching"] = branching;
							 | 
						||
| 
								 | 
							
								        // Algorithm used for picking the initial cluster centers
							 | 
						||
| 
								 | 
							
								        (*this)["centers_init"] = centers_init;
							 | 
						||
| 
								 | 
							
								        // number of parallel trees to build
							 | 
						||
| 
								 | 
							
								        (*this)["trees"] = trees;
							 | 
						||
| 
								 | 
							
								        // maximum leaf size
							 | 
						||
| 
								 | 
							
								        (*this)["leaf_size"] = leaf_size;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Hierarchical index
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Contains a tree constructed through a hierarchical clustering
							 | 
						||
| 
								 | 
							
								 * and other information for indexing a set of points for nearest-neighbour matching.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								template <typename Distance>
							 | 
						||
| 
								 | 
							
								class HierarchicalClusteringIndex : public NNIndex<Distance>
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::ElementType ElementType;
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::ResultType DistanceType;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								private:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * The function used for choosing the cluster centers.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    centersAlgFunction chooseCenters;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Chooses the initial centers in the k-means clustering in a random manner.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     k = number of centers
							 | 
						||
| 
								 | 
							
								     *     vecs = the dataset of points
							 | 
						||
| 
								 | 
							
								     *     indices = indices in the dataset
							 | 
						||
| 
								 | 
							
								     *     indices_length = length of indices vector
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void chooseCentersRandom(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        UniqueRandom r(indices_length);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        int index;
							 | 
						||
| 
								 | 
							
								        for (index=0; index<k; ++index) {
							 | 
						||
| 
								 | 
							
								            bool duplicate = true;
							 | 
						||
| 
								 | 
							
								            int rnd;
							 | 
						||
| 
								 | 
							
								            while (duplicate) {
							 | 
						||
| 
								 | 
							
								                duplicate = false;
							 | 
						||
| 
								 | 
							
								                rnd = r.next();
							 | 
						||
| 
								 | 
							
								                if (rnd<0) {
							 | 
						||
| 
								 | 
							
								                    centers_length = index;
							 | 
						||
| 
								 | 
							
								                    return;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                centers[index] = dsindices[rnd];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                for (int j=0; j<index; ++j) {
							 | 
						||
| 
								 | 
							
								                    DistanceType sq = distance(dataset[centers[index]], dataset[centers[j]], dataset.cols);
							 | 
						||
| 
								 | 
							
								                    if (sq<1e-16) {
							 | 
						||
| 
								 | 
							
								                        duplicate = true;
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        centers_length = index;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Chooses the initial centers in the k-means using Gonzales' algorithm
							 | 
						||
| 
								 | 
							
								     * so that the centers are spaced apart from each other.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     k = number of centers
							 | 
						||
| 
								 | 
							
								     *     vecs = the dataset of points
							 | 
						||
| 
								 | 
							
								     *     indices = indices in the dataset
							 | 
						||
| 
								 | 
							
								     * Returns:
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void chooseCentersGonzales(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        int n = indices_length;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        int rnd = rand_int(n);
							 | 
						||
| 
								 | 
							
								        CV_DbgAssert(rnd >=0 && rnd < n);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        centers[0] = dsindices[rnd];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        int index;
							 | 
						||
| 
								 | 
							
								        for (index=1; index<k; ++index) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            int best_index = -1;
							 | 
						||
| 
								 | 
							
								            DistanceType best_val = 0;
							 | 
						||
| 
								 | 
							
								            for (int j=0; j<n; ++j) {
							 | 
						||
| 
								 | 
							
								                DistanceType dist = distance(dataset[centers[0]],dataset[dsindices[j]],dataset.cols);
							 | 
						||
| 
								 | 
							
								                for (int i=1; i<index; ++i) {
							 | 
						||
| 
								 | 
							
								                    DistanceType tmp_dist = distance(dataset[centers[i]],dataset[dsindices[j]],dataset.cols);
							 | 
						||
| 
								 | 
							
								                    if (tmp_dist<dist) {
							 | 
						||
| 
								 | 
							
								                        dist = tmp_dist;
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								                if (dist>best_val) {
							 | 
						||
| 
								 | 
							
								                    best_val = dist;
							 | 
						||
| 
								 | 
							
								                    best_index = j;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            if (best_index!=-1) {
							 | 
						||
| 
								 | 
							
								                centers[index] = dsindices[best_index];
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            else {
							 | 
						||
| 
								 | 
							
								                break;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        centers_length = index;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Chooses the initial centers in the k-means using the algorithm
							 | 
						||
| 
								 | 
							
								     * proposed in the KMeans++ paper:
							 | 
						||
| 
								 | 
							
								     * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Implementation of this function was converted from the one provided in Arthur's code.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     k = number of centers
							 | 
						||
| 
								 | 
							
								     *     vecs = the dataset of points
							 | 
						||
| 
								 | 
							
								     *     indices = indices in the dataset
							 | 
						||
| 
								 | 
							
								     * Returns:
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void chooseCentersKMeanspp(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        int n = indices_length;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        double currentPot = 0;
							 | 
						||
| 
								 | 
							
								        DistanceType* closestDistSq = new DistanceType[n];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // Choose one random center and set the closestDistSq values
							 | 
						||
| 
								 | 
							
								        int index = rand_int(n);
							 | 
						||
| 
								 | 
							
								        CV_DbgAssert(index >=0 && index < n);
							 | 
						||
| 
								 | 
							
								        centers[0] = dsindices[index];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // Computing distance^2 will have the advantage of even higher probability further to pick new centers
							 | 
						||
| 
								 | 
							
								        // far from previous centers (and this complies to "k-means++: the advantages of careful seeding" article)
							 | 
						||
| 
								 | 
							
								        for (int i = 0; i < n; i++) {
							 | 
						||
| 
								 | 
							
								            closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
							 | 
						||
| 
								 | 
							
								            closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
							 | 
						||
| 
								 | 
							
								            currentPot += closestDistSq[i];
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        const int numLocalTries = 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // Choose each center
							 | 
						||
| 
								 | 
							
								        int centerCount;
							 | 
						||
| 
								 | 
							
								        for (centerCount = 1; centerCount < k; centerCount++) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            // Repeat several trials
							 | 
						||
| 
								 | 
							
								            double bestNewPot = -1;
							 | 
						||
| 
								 | 
							
								            int bestNewIndex = 0;
							 | 
						||
| 
								 | 
							
								            for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                // Choose our center - have to be slightly careful to return a valid answer even accounting
							 | 
						||
| 
								 | 
							
								                // for possible rounding errors
							 | 
						||
| 
								 | 
							
								                double randVal = rand_double(currentPot);
							 | 
						||
| 
								 | 
							
								                for (index = 0; index < n-1; index++) {
							 | 
						||
| 
								 | 
							
								                    if (randVal <= closestDistSq[index]) break;
							 | 
						||
| 
								 | 
							
								                    else randVal -= closestDistSq[index];
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                // Compute the new potential
							 | 
						||
| 
								 | 
							
								                double newPot = 0;
							 | 
						||
| 
								 | 
							
								                for (int i = 0; i < n; i++) {
							 | 
						||
| 
								 | 
							
								                    DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
							 | 
						||
| 
								 | 
							
								                    newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                // Store the best result
							 | 
						||
| 
								 | 
							
								                if ((bestNewPot < 0)||(newPot < bestNewPot)) {
							 | 
						||
| 
								 | 
							
								                    bestNewPot = newPot;
							 | 
						||
| 
								 | 
							
								                    bestNewIndex = index;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            // Add the appropriate center
							 | 
						||
| 
								 | 
							
								            centers[centerCount] = dsindices[bestNewIndex];
							 | 
						||
| 
								 | 
							
								            currentPot = bestNewPot;
							 | 
						||
| 
								 | 
							
								            for (int i = 0; i < n; i++) {
							 | 
						||
| 
								 | 
							
								                DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols);
							 | 
						||
| 
								 | 
							
								                closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        centers_length = centerCount;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        delete[] closestDistSq;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Chooses the initial centers in a way inspired by Gonzales (by Pierre-Emmanuel Viel):
							 | 
						||
| 
								 | 
							
								     * select the first point of the list as a candidate, then parse the points list. If another
							 | 
						||
| 
								 | 
							
								     * point is further than current candidate from the other centers, test if it is a good center
							 | 
						||
| 
								 | 
							
								     * of a local aggregation. If it is, replace current candidate by this point. And so on...
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Used with KMeansIndex that computes centers coordinates by averaging positions of clusters points,
							 | 
						||
| 
								 | 
							
								     * this doesn't make a real difference with previous methods. But used with HierarchicalClusteringIndex
							 | 
						||
| 
								 | 
							
								     * class that pick centers among existing points instead of computing the barycenters, there is a real
							 | 
						||
| 
								 | 
							
								     * improvement.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     k = number of centers
							 | 
						||
| 
								 | 
							
								     *     vecs = the dataset of points
							 | 
						||
| 
								 | 
							
								     *     indices = indices in the dataset
							 | 
						||
| 
								 | 
							
								     * Returns:
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void GroupWiseCenterChooser(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        const float kSpeedUpFactor = 1.3f;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        int n = indices_length;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        DistanceType* closestDistSq = new DistanceType[n];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // Choose one random center and set the closestDistSq values
							 | 
						||
| 
								 | 
							
								        int index = rand_int(n);
							 | 
						||
| 
								 | 
							
								        CV_DbgAssert(index >=0 && index < n);
							 | 
						||
| 
								 | 
							
								        centers[0] = dsindices[index];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for (int i = 0; i < n; i++) {
							 | 
						||
| 
								 | 
							
								            closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // Choose each center
							 | 
						||
| 
								 | 
							
								        int centerCount;
							 | 
						||
| 
								 | 
							
								        for (centerCount = 1; centerCount < k; centerCount++) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            // Repeat several trials
							 | 
						||
| 
								 | 
							
								            double bestNewPot = -1;
							 | 
						||
| 
								 | 
							
								            int bestNewIndex = 0;
							 | 
						||
| 
								 | 
							
								            DistanceType furthest = 0;
							 | 
						||
| 
								 | 
							
								            for (index = 0; index < n; index++) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                // We will test only the potential of the points further than current candidate
							 | 
						||
| 
								 | 
							
								                if( closestDistSq[index] > kSpeedUpFactor * (float)furthest ) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                    // Compute the new potential
							 | 
						||
| 
								 | 
							
								                    double newPot = 0;
							 | 
						||
| 
								 | 
							
								                    for (int i = 0; i < n; i++) {
							 | 
						||
| 
								 | 
							
								                        newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols)
							 | 
						||
| 
								 | 
							
								                                            , closestDistSq[i] );
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                    // Store the best result
							 | 
						||
| 
								 | 
							
								                    if ((bestNewPot < 0)||(newPot <= bestNewPot)) {
							 | 
						||
| 
								 | 
							
								                        bestNewPot = newPot;
							 | 
						||
| 
								 | 
							
								                        bestNewIndex = index;
							 | 
						||
| 
								 | 
							
								                        furthest = closestDistSq[index];
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            // Add the appropriate center
							 | 
						||
| 
								 | 
							
								            centers[centerCount] = dsindices[bestNewIndex];
							 | 
						||
| 
								 | 
							
								            for (int i = 0; i < n; i++) {
							 | 
						||
| 
								 | 
							
								                closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols)
							 | 
						||
| 
								 | 
							
								                                             , closestDistSq[i] );
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        centers_length = centerCount;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        delete[] closestDistSq;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Index constructor
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *          inputData = dataset with the input features
							 | 
						||
| 
								 | 
							
								     *          params = parameters passed to the hierarchical k-means algorithm
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    HierarchicalClusteringIndex(const Matrix<ElementType>& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(),
							 | 
						||
| 
								 | 
							
								                                Distance d = Distance())
							 | 
						||
| 
								 | 
							
								        : dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        memoryCounter = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        size_ = dataset.rows;
							 | 
						||
| 
								 | 
							
								        veclen_ = dataset.cols;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        branching_ = get_param(params,"branching",32);
							 | 
						||
| 
								 | 
							
								        centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM);
							 | 
						||
| 
								 | 
							
								        trees_ = get_param(params,"trees",4);
							 | 
						||
| 
								 | 
							
								        leaf_size_ = get_param(params,"leaf_size",100);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (centers_init_==FLANN_CENTERS_RANDOM) {
							 | 
						||
| 
								 | 
							
								            chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else if (centers_init_==FLANN_CENTERS_GONZALES) {
							 | 
						||
| 
								 | 
							
								            chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
							 | 
						||
| 
								 | 
							
								            chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else if (centers_init_==FLANN_CENTERS_GROUPWISE) {
							 | 
						||
| 
								 | 
							
								            chooseCenters = &HierarchicalClusteringIndex::GroupWiseCenterChooser;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            FLANN_THROW(cv::Error::StsError, "Unknown algorithm for choosing initial centers.");
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        root = new NodePtr[trees_];
							 | 
						||
| 
								 | 
							
								        indices = new int*[trees_];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<trees_; ++i) {
							 | 
						||
| 
								 | 
							
								            root[i] = NULL;
							 | 
						||
| 
								 | 
							
								            indices[i] = NULL;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    HierarchicalClusteringIndex(const HierarchicalClusteringIndex&);
							 | 
						||
| 
								 | 
							
								    HierarchicalClusteringIndex& operator=(const HierarchicalClusteringIndex&);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Index destructor.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Release the memory used by the index.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    virtual ~HierarchicalClusteringIndex()
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        if (root!=NULL) {
							 | 
						||
| 
								 | 
							
								            delete[] root;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (indices!=NULL) {
							 | 
						||
| 
								 | 
							
								            free_indices();
							 | 
						||
| 
								 | 
							
								            delete[] indices;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     *  Returns size of index.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    size_t size() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return size_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Returns the length of an index feature.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    size_t veclen() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return veclen_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Computes the inde memory usage
							 | 
						||
| 
								 | 
							
								     * Returns: memory used by the index
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    int usedMemory() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return pool.usedMemory+pool.wastedMemory+memoryCounter;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Builds the index
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void buildIndex() CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        if (branching_<2) {
							 | 
						||
| 
								 | 
							
								            FLANN_THROW(cv::Error::StsError, "Branching factor must be at least 2");
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        free_indices();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<trees_; ++i) {
							 | 
						||
| 
								 | 
							
								            indices[i] = new int[size_];
							 | 
						||
| 
								 | 
							
								            for (size_t j=0; j<size_; ++j) {
							 | 
						||
| 
								 | 
							
								                indices[i][j] = (int)j;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            root[i] = pool.allocate<Node>();
							 | 
						||
| 
								 | 
							
								            computeClustering(root[i], indices[i], (int)size_, branching_,0);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    flann_algorithm_t getType() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return FLANN_INDEX_HIERARCHICAL;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void saveIndex(FILE* stream) CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        save_value(stream, branching_);
							 | 
						||
| 
								 | 
							
								        save_value(stream, trees_);
							 | 
						||
| 
								 | 
							
								        save_value(stream, centers_init_);
							 | 
						||
| 
								 | 
							
								        save_value(stream, leaf_size_);
							 | 
						||
| 
								 | 
							
								        save_value(stream, memoryCounter);
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<trees_; ++i) {
							 | 
						||
| 
								 | 
							
								            save_value(stream, *indices[i], size_);
							 | 
						||
| 
								 | 
							
								            save_tree(stream, root[i], i);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void loadIndex(FILE* stream) CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        if (root!=NULL) {
							 | 
						||
| 
								 | 
							
								            delete[] root;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (indices!=NULL) {
							 | 
						||
| 
								 | 
							
								            free_indices();
							 | 
						||
| 
								 | 
							
								            delete[] indices;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        load_value(stream, branching_);
							 | 
						||
| 
								 | 
							
								        load_value(stream, trees_);
							 | 
						||
| 
								 | 
							
								        load_value(stream, centers_init_);
							 | 
						||
| 
								 | 
							
								        load_value(stream, leaf_size_);
							 | 
						||
| 
								 | 
							
								        load_value(stream, memoryCounter);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        indices = new int*[trees_];
							 | 
						||
| 
								 | 
							
								        root = new NodePtr[trees_];
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<trees_; ++i) {
							 | 
						||
| 
								 | 
							
								            indices[i] = new int[size_];
							 | 
						||
| 
								 | 
							
								            load_value(stream, *indices[i], size_);
							 | 
						||
| 
								 | 
							
								            load_tree(stream, root[i], i);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        params["algorithm"] = getType();
							 | 
						||
| 
								 | 
							
								        params["branching"] = branching_;
							 | 
						||
| 
								 | 
							
								        params["trees"] = trees_;
							 | 
						||
| 
								 | 
							
								        params["centers_init"] = centers_init_;
							 | 
						||
| 
								 | 
							
								        params["leaf_size"] = leaf_size_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Find set of nearest neighbors to vec. Their indices are stored inside
							 | 
						||
| 
								 | 
							
								     * the result object.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     result = the result object in which the indices of the nearest-neighbors are stored
							 | 
						||
| 
								 | 
							
								     *     vec = the vector for which to search the nearest neighbors
							 | 
						||
| 
								 | 
							
								     *     searchParams = parameters that influence the search algorithm (checks)
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        const int maxChecks = get_param(searchParams,"checks",32);
							 | 
						||
| 
								 | 
							
								        const bool explore_all_trees = get_param(searchParams,"explore_all_trees",false);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // Priority queue storing intermediate branches in the best-bin-first search
							 | 
						||
| 
								 | 
							
								        const cv::Ptr<Heap<BranchSt>>& heap = Heap<BranchSt>::getPooledInstance(cv::utils::getThreadID(), (int)size_);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        std::vector<bool> checked(size_,false);
							 | 
						||
| 
								 | 
							
								        int checks = 0;
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<trees_; ++i) {
							 | 
						||
| 
								 | 
							
								            findNN(root[i], result, vec, checks, maxChecks, heap, checked, explore_all_trees);
							 | 
						||
| 
								 | 
							
								            if (!explore_all_trees && (checks >= maxChecks) && result.full())
							 | 
						||
| 
								 | 
							
								                break;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        BranchSt branch;
							 | 
						||
| 
								 | 
							
								        while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
							 | 
						||
| 
								 | 
							
								            NodePtr node = branch.node;
							 | 
						||
| 
								 | 
							
								            findNN(node, result, vec, checks, maxChecks, heap, checked, false);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        CV_Assert(result.full());
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    IndexParams getParameters() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return params;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								private:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Structure representing a node in the hierarchical k-means tree.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    struct Node
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * The cluster center index
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        int pivot;
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * The cluster size (number of points in the cluster)
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        int size;
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * Child nodes (only for non-terminal nodes)
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        Node** childs;
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * Node points (only for terminal nodes)
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        int* indices;
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * Level
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        int level;
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								    typedef Node* NodePtr;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Alias definition for a nicer syntax.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    typedef BranchStruct<NodePtr, DistanceType> BranchSt;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void save_tree(FILE* stream, NodePtr node, int num)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        save_value(stream, *node);
							 | 
						||
| 
								 | 
							
								        if (node->childs==NULL) {
							 | 
						||
| 
								 | 
							
								            int indices_offset = (int)(node->indices - indices[num]);
							 | 
						||
| 
								 | 
							
								            save_value(stream, indices_offset);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            for(int i=0; i<branching_; ++i) {
							 | 
						||
| 
								 | 
							
								                save_tree(stream, node->childs[i], num);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void load_tree(FILE* stream, NodePtr& node, int num)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        node = pool.allocate<Node>();
							 | 
						||
| 
								 | 
							
								        load_value(stream, *node);
							 | 
						||
| 
								 | 
							
								        if (node->childs==NULL) {
							 | 
						||
| 
								 | 
							
								            int indices_offset;
							 | 
						||
| 
								 | 
							
								            load_value(stream, indices_offset);
							 | 
						||
| 
								 | 
							
								            node->indices = indices[num] + indices_offset;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            node->childs = pool.allocate<NodePtr>(branching_);
							 | 
						||
| 
								 | 
							
								            for(int i=0; i<branching_; ++i) {
							 | 
						||
| 
								 | 
							
								                load_tree(stream, node->childs[i], num);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Release the inner elements of indices[]
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void free_indices()
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        if (indices!=NULL) {
							 | 
						||
| 
								 | 
							
								            for(int i=0; i<trees_; ++i) {
							 | 
						||
| 
								 | 
							
								                if (indices[i]!=NULL) {
							 | 
						||
| 
								 | 
							
								                    delete[] indices[i];
							 | 
						||
| 
								 | 
							
								                    indices[i] = NULL;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void computeLabels(int* dsindices, int indices_length,  int* centers, int centers_length, int* labels, DistanceType& cost)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        cost = 0;
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<indices_length; ++i) {
							 | 
						||
| 
								 | 
							
								            ElementType* point = dataset[dsindices[i]];
							 | 
						||
| 
								 | 
							
								            DistanceType dist = distance(point, dataset[centers[0]], veclen_);
							 | 
						||
| 
								 | 
							
								            labels[i] = 0;
							 | 
						||
| 
								 | 
							
								            for (int j=1; j<centers_length; ++j) {
							 | 
						||
| 
								 | 
							
								                DistanceType new_dist = distance(point, dataset[centers[j]], veclen_);
							 | 
						||
| 
								 | 
							
								                if (dist>new_dist) {
							 | 
						||
| 
								 | 
							
								                    labels[i] = j;
							 | 
						||
| 
								 | 
							
								                    dist = new_dist;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            cost += dist;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * The method responsible with actually doing the recursive hierarchical
							 | 
						||
| 
								 | 
							
								     * clustering
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     node = the node to cluster
							 | 
						||
| 
								 | 
							
								     *     indices = indices of the points belonging to the current node
							 | 
						||
| 
								 | 
							
								     *     branching = the branching factor to use in the clustering
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void computeClustering(NodePtr node, int* dsindices, int indices_length, int branching, int level)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        node->size = indices_length;
							 | 
						||
| 
								 | 
							
								        node->level = level;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (indices_length < leaf_size_) { // leaf node
							 | 
						||
| 
								 | 
							
								            node->indices = dsindices;
							 | 
						||
| 
								 | 
							
								            std::sort(node->indices,node->indices+indices_length);
							 | 
						||
| 
								 | 
							
								            node->childs = NULL;
							 | 
						||
| 
								 | 
							
								            return;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        std::vector<int> centers(branching);
							 | 
						||
| 
								 | 
							
								        std::vector<int> labels(indices_length);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        int centers_length;
							 | 
						||
| 
								 | 
							
								        (this->*chooseCenters)(branching, dsindices, indices_length, ¢ers[0], centers_length);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (centers_length<branching) {
							 | 
						||
| 
								 | 
							
								            node->indices = dsindices;
							 | 
						||
| 
								 | 
							
								            std::sort(node->indices,node->indices+indices_length);
							 | 
						||
| 
								 | 
							
								            node->childs = NULL;
							 | 
						||
| 
								 | 
							
								            return;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        //	assign points to clusters
							 | 
						||
| 
								 | 
							
								        DistanceType cost;
							 | 
						||
| 
								 | 
							
								        computeLabels(dsindices, indices_length, ¢ers[0], centers_length, &labels[0], cost);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        node->childs = pool.allocate<NodePtr>(branching);
							 | 
						||
| 
								 | 
							
								        int start = 0;
							 | 
						||
| 
								 | 
							
								        int end = start;
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<branching; ++i) {
							 | 
						||
| 
								 | 
							
								            for (int j=0; j<indices_length; ++j) {
							 | 
						||
| 
								 | 
							
								                if (labels[j]==i) {
							 | 
						||
| 
								 | 
							
								                    std::swap(dsindices[j],dsindices[end]);
							 | 
						||
| 
								 | 
							
								                    std::swap(labels[j],labels[end]);
							 | 
						||
| 
								 | 
							
								                    end++;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            node->childs[i] = pool.allocate<Node>();
							 | 
						||
| 
								 | 
							
								            node->childs[i]->pivot = centers[i];
							 | 
						||
| 
								 | 
							
								            node->childs[i]->indices = NULL;
							 | 
						||
| 
								 | 
							
								            computeClustering(node->childs[i],dsindices+start, end-start, branching, level+1);
							 | 
						||
| 
								 | 
							
								            start=end;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Performs one descent in the hierarchical k-means tree. The branches not
							 | 
						||
| 
								 | 
							
								     * visited are stored in a priority queue.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *      node = node to explore
							 | 
						||
| 
								 | 
							
								     *      result = container for the k-nearest neighbors found
							 | 
						||
| 
								 | 
							
								     *      vec = query points
							 | 
						||
| 
								 | 
							
								     *      checks = how many points in the dataset have been checked so far
							 | 
						||
| 
								 | 
							
								     *      maxChecks = maximum dataset points to checks
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
							 | 
						||
| 
								 | 
							
								                const cv::Ptr<Heap<BranchSt>>& heap, std::vector<bool>& checked, bool explore_all_trees = false)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        if (node->childs==NULL) {
							 | 
						||
| 
								 | 
							
								            if (!explore_all_trees && (checks>=maxChecks) && result.full()) {
							 | 
						||
| 
								 | 
							
								                return;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<node->size; ++i) {
							 | 
						||
| 
								 | 
							
								                int index = node->indices[i];
							 | 
						||
| 
								 | 
							
								                if (!checked[index]) {
							 | 
						||
| 
								 | 
							
								                    DistanceType dist = distance(dataset[index], vec, veclen_);
							 | 
						||
| 
								 | 
							
								                    result.addPoint(dist, index);
							 | 
						||
| 
								 | 
							
								                    checked[index] = true;
							 | 
						||
| 
								 | 
							
								                    ++checks;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            DistanceType* domain_distances = new DistanceType[branching_];
							 | 
						||
| 
								 | 
							
								            int best_index = 0;
							 | 
						||
| 
								 | 
							
								            domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_);
							 | 
						||
| 
								 | 
							
								            for (int i=1; i<branching_; ++i) {
							 | 
						||
| 
								 | 
							
								                domain_distances[i] = distance(vec, dataset[node->childs[i]->pivot], veclen_);
							 | 
						||
| 
								 | 
							
								                if (domain_distances[i]<domain_distances[best_index]) {
							 | 
						||
| 
								 | 
							
								                    best_index = i;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<branching_; ++i) {
							 | 
						||
| 
								 | 
							
								                if (i!=best_index) {
							 | 
						||
| 
								 | 
							
								                    heap->insert(BranchSt(node->childs[i],domain_distances[i]));
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            delete[] domain_distances;
							 | 
						||
| 
								 | 
							
								            findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked, explore_all_trees);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								private:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * The dataset used by this index
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    const Matrix<ElementType> dataset;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Parameters used by this index
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    IndexParams params;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Number of features in the dataset.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    size_t size_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Length of each feature.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    size_t veclen_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * The root node in the tree.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    NodePtr* root;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     *  Array of indices to vectors in the dataset.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    int** indices;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * The distance
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    Distance distance;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Pooled memory allocator.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Using a pooled memory allocator is more efficient
							 | 
						||
| 
								 | 
							
								     * than allocating memory directly when there is a large
							 | 
						||
| 
								 | 
							
								     * number small of memory allocations.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    PooledAllocator pool;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Memory occupied by the index.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    int memoryCounter;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** index parameters */
							 | 
						||
| 
								 | 
							
								    int branching_;
							 | 
						||
| 
								 | 
							
								    int trees_;
							 | 
						||
| 
								 | 
							
								    flann_centers_init_t centers_init_;
							 | 
						||
| 
								 | 
							
								    int leaf_size_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//! @endcond
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */
							 |