You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
	
	
		
			322 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
		
		
			
		
	
	
			322 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
| 
								 
											3 years ago
										 
									 | 
							
								/***********************************************************************
							 | 
						||
| 
								 | 
							
								 * Software License Agreement (BSD License)
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
							 | 
						||
| 
								 | 
							
								 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * THE BSD LICENSE
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Redistribution and use in source and binary forms, with or without
							 | 
						||
| 
								 | 
							
								 * modification, are permitted provided that the following conditions
							 | 
						||
| 
								 | 
							
								 * are met:
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * 1. Redistributions of source code must retain the above copyright
							 | 
						||
| 
								 | 
							
								 *    notice, this list of conditions and the following disclaimer.
							 | 
						||
| 
								 | 
							
								 * 2. Redistributions in binary form must reproduce the above copyright
							 | 
						||
| 
								 | 
							
								 *    notice, this list of conditions and the following disclaimer in the
							 | 
						||
| 
								 | 
							
								 *    documentation and/or other materials provided with the distribution.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
							 | 
						||
| 
								 | 
							
								 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
							 | 
						||
| 
								 | 
							
								 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
							 | 
						||
| 
								 | 
							
								 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
							 | 
						||
| 
								 | 
							
								 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
							 | 
						||
| 
								 | 
							
								 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
							 | 
						||
| 
								 | 
							
								 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
							 | 
						||
| 
								 | 
							
								 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
							 | 
						||
| 
								 | 
							
								 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
							 | 
						||
| 
								 | 
							
								 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
							 | 
						||
| 
								 | 
							
								 *************************************************************************/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef OPENCV_FLANN_INDEX_TESTING_H_
							 | 
						||
| 
								 | 
							
								#define OPENCV_FLANN_INDEX_TESTING_H_
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//! @cond IGNORED
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <cstring>
							 | 
						||
| 
								 | 
							
								#include <cmath>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "matrix.h"
							 | 
						||
| 
								 | 
							
								#include "nn_index.h"
							 | 
						||
| 
								 | 
							
								#include "result_set.h"
							 | 
						||
| 
								 | 
							
								#include "logger.h"
							 | 
						||
| 
								 | 
							
								#include "timer.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace cvflann
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline int countCorrectMatches(int* neighbors, int* groundTruth, int n)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    int count = 0;
							 | 
						||
| 
								 | 
							
								    for (int i=0; i<n; ++i) {
							 | 
						||
| 
								 | 
							
								        for (int k=0; k<n; ++k) {
							 | 
						||
| 
								 | 
							
								            if (neighbors[i]==groundTruth[k]) {
							 | 
						||
| 
								 | 
							
								                count++;
							 | 
						||
| 
								 | 
							
								                break;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    return count;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <typename Distance>
							 | 
						||
| 
								 | 
							
								typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distance::ElementType>& inputData, typename Distance::ElementType* target,
							 | 
						||
| 
								 | 
							
								                                                    int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::ResultType DistanceType;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    DistanceType ret = 0;
							 | 
						||
| 
								 | 
							
								    for (int i=0; i<n; ++i) {
							 | 
						||
| 
								 | 
							
								        DistanceType den = distance(inputData[groundTruth[i]], target, veclen);
							 | 
						||
| 
								 | 
							
								        DistanceType num = distance(inputData[neighbors[i]], target, veclen);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if ((den==0)&&(num==0)) {
							 | 
						||
| 
								 | 
							
								            ret += 1;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            ret += num/den;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return ret;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <typename Distance>
							 | 
						||
| 
								 | 
							
								float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
							 | 
						||
| 
								 | 
							
								                               const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int nn, int checks,
							 | 
						||
| 
								 | 
							
								                               float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::ResultType DistanceType;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (matches.cols<size_t(nn)) {
							 | 
						||
| 
								 | 
							
								        Logger::info("matches.cols=%d, nn=%d\n",matches.cols,nn);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        FLANN_THROW(cv::Error::StsError, "Ground truth is not computed for as many neighbors as requested");
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    KNNResultSet<DistanceType> resultSet(nn+skipMatches);
							 | 
						||
| 
								 | 
							
								    SearchParams searchParams(checks);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    std::vector<int> indices(nn+skipMatches);
							 | 
						||
| 
								 | 
							
								    std::vector<DistanceType> dists(nn+skipMatches);
							 | 
						||
| 
								 | 
							
								    int* neighbors = &indices[skipMatches];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    int correct = 0;
							 | 
						||
| 
								 | 
							
								    DistanceType distR = 0;
							 | 
						||
| 
								 | 
							
								    StartStopTimer t;
							 | 
						||
| 
								 | 
							
								    int repeats = 0;
							 | 
						||
| 
								 | 
							
								    while (t.value<0.2) {
							 | 
						||
| 
								 | 
							
								        repeats++;
							 | 
						||
| 
								 | 
							
								        t.start();
							 | 
						||
| 
								 | 
							
								        correct = 0;
							 | 
						||
| 
								 | 
							
								        distR = 0;
							 | 
						||
| 
								 | 
							
								        for (size_t i = 0; i < testData.rows; i++) {
							 | 
						||
| 
								 | 
							
								            resultSet.init(&indices[0], &dists[0]);
							 | 
						||
| 
								 | 
							
								            index.findNeighbors(resultSet, testData[i], searchParams);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            correct += countCorrectMatches(neighbors,matches[i], nn);
							 | 
						||
| 
								 | 
							
								            distR += computeDistanceRaport<Distance>(inputData, testData[i], neighbors, matches[i], (int)testData.cols, nn, distance);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        t.stop();
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    time = float(t.value/repeats);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    float precicion = (float)correct/(nn*testData.rows);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    dist = distR/(testData.rows*nn);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n",
							 | 
						||
| 
								 | 
							
								                 checks, precicion, time, 1000.0 * time / testData.rows, dist);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return precicion;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <typename Distance>
							 | 
						||
| 
								 | 
							
								float test_index_checks(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
							 | 
						||
| 
								 | 
							
								                        const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
							 | 
						||
| 
								 | 
							
								                        int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::ResultType DistanceType;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");
							 | 
						||
| 
								 | 
							
								    Logger::info("---------------------------------------------------------\n");
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    float time = 0;
							 | 
						||
| 
								 | 
							
								    DistanceType dist = 0;
							 | 
						||
| 
								 | 
							
								    precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return time;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <typename Distance>
							 | 
						||
| 
								 | 
							
								float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
							 | 
						||
| 
								 | 
							
								                           const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
							 | 
						||
| 
								 | 
							
								                           float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::ResultType DistanceType;
							 | 
						||
| 
								 | 
							
								    const float SEARCH_EPS = 0.001f;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");
							 | 
						||
| 
								 | 
							
								    Logger::info("---------------------------------------------------------\n");
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    int c2 = 1;
							 | 
						||
| 
								 | 
							
								    float p2;
							 | 
						||
| 
								 | 
							
								    int c1 = 1;
							 | 
						||
| 
								 | 
							
								    //float p1;
							 | 
						||
| 
								 | 
							
								    float time;
							 | 
						||
| 
								 | 
							
								    DistanceType dist;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (p2>precision) {
							 | 
						||
| 
								 | 
							
								        Logger::info("Got as close as I can\n");
							 | 
						||
| 
								 | 
							
								        checks = c2;
							 | 
						||
| 
								 | 
							
								        return time;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    while (p2<precision) {
							 | 
						||
| 
								 | 
							
								        c1 = c2;
							 | 
						||
| 
								 | 
							
								        //p1 = p2;
							 | 
						||
| 
								 | 
							
								        c2 *=2;
							 | 
						||
| 
								 | 
							
								        p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    int cx;
							 | 
						||
| 
								 | 
							
								    float realPrecision;
							 | 
						||
| 
								 | 
							
								    if (fabs(p2-precision)>SEARCH_EPS) {
							 | 
						||
| 
								 | 
							
								        Logger::info("Start linear estimation\n");
							 | 
						||
| 
								 | 
							
								        // after we got to values in the vecinity of the desired precision
							 | 
						||
| 
								 | 
							
								        // use linear approximation get a better estimation
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        cx = (c1+c2)/2;
							 | 
						||
| 
								 | 
							
								        realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
							 | 
						||
| 
								 | 
							
								        while (fabs(realPrecision-precision)>SEARCH_EPS) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            if (realPrecision<precision) {
							 | 
						||
| 
								 | 
							
								                c1 = cx;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            else {
							 | 
						||
| 
								 | 
							
								                c2 = cx;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            cx = (c1+c2)/2;
							 | 
						||
| 
								 | 
							
								            if (cx==c1) {
							 | 
						||
| 
								 | 
							
								                Logger::info("Got as close as I can\n");
							 | 
						||
| 
								 | 
							
								                break;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        c2 = cx;
							 | 
						||
| 
								 | 
							
								        p2 = realPrecision;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else {
							 | 
						||
| 
								 | 
							
								        Logger::info("No need for linear estimation\n");
							 | 
						||
| 
								 | 
							
								        cx = c2;
							 | 
						||
| 
								 | 
							
								        realPrecision = p2;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    checks = cx;
							 | 
						||
| 
								 | 
							
								    return time;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <typename Distance>
							 | 
						||
| 
								 | 
							
								void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
							 | 
						||
| 
								 | 
							
								                           const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
							 | 
						||
| 
								 | 
							
								                           float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::ResultType DistanceType;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    const float SEARCH_EPS = 0.001;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // make sure precisions array is sorted
							 | 
						||
| 
								 | 
							
								    std::sort(precisions, precisions+precisions_length);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    int pindex = 0;
							 | 
						||
| 
								 | 
							
								    float precision = precisions[pindex];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");
							 | 
						||
| 
								 | 
							
								    Logger::info("---------------------------------------------------------\n");
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    int c2 = 1;
							 | 
						||
| 
								 | 
							
								    float p2;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    int c1 = 1;
							 | 
						||
| 
								 | 
							
								    float p1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    float time;
							 | 
						||
| 
								 | 
							
								    DistanceType dist;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // if precision for 1 run down the tree is already
							 | 
						||
| 
								 | 
							
								    // better then some of the requested precisions, then
							 | 
						||
| 
								 | 
							
								    // skip those
							 | 
						||
| 
								 | 
							
								    while (precisions[pindex]<p2 && pindex<precisions_length) {
							 | 
						||
| 
								 | 
							
								        pindex++;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (pindex==precisions_length) {
							 | 
						||
| 
								 | 
							
								        Logger::info("Got as close as I can\n");
							 | 
						||
| 
								 | 
							
								        return;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    for (int i=pindex; i<precisions_length; ++i) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        precision = precisions[i];
							 | 
						||
| 
								 | 
							
								        while (p2<precision) {
							 | 
						||
| 
								 | 
							
								            c1 = c2;
							 | 
						||
| 
								 | 
							
								            p1 = p2;
							 | 
						||
| 
								 | 
							
								            c2 *=2;
							 | 
						||
| 
								 | 
							
								            p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
							 | 
						||
| 
								 | 
							
								            if ((maxTime> 0)&&(time > maxTime)&&(p2<precision)) return;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        int cx;
							 | 
						||
| 
								 | 
							
								        float realPrecision;
							 | 
						||
| 
								 | 
							
								        if (fabs(p2-precision)>SEARCH_EPS) {
							 | 
						||
| 
								 | 
							
								            Logger::info("Start linear estimation\n");
							 | 
						||
| 
								 | 
							
								            // after we got to values in the vecinity of the desired precision
							 | 
						||
| 
								 | 
							
								            // use linear approximation get a better estimation
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            cx = (c1+c2)/2;
							 | 
						||
| 
								 | 
							
								            realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
							 | 
						||
| 
								 | 
							
								            while (fabs(realPrecision-precision)>SEARCH_EPS) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                if (realPrecision<precision) {
							 | 
						||
| 
								 | 
							
								                    c1 = cx;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								                else {
							 | 
						||
| 
								 | 
							
								                    c2 = cx;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								                cx = (c1+c2)/2;
							 | 
						||
| 
								 | 
							
								                if (cx==c1) {
							 | 
						||
| 
								 | 
							
								                    Logger::info("Got as close as I can\n");
							 | 
						||
| 
								 | 
							
								                    break;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								                realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            c2 = cx;
							 | 
						||
| 
								 | 
							
								            p2 = realPrecision;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            Logger::info("No need for linear estimation\n");
							 | 
						||
| 
								 | 
							
								            cx = c2;
							 | 
						||
| 
								 | 
							
								            realPrecision = p2;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//! @endcond
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif //OPENCV_FLANN_INDEX_TESTING_H_
							 |