You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
	
	
		
			637 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
		
		
			
		
	
	
			637 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
| 
								 
											3 years ago
										 
									 | 
							
								/***********************************************************************
							 | 
						||
| 
								 | 
							
								 * Software License Agreement (BSD License)
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
							 | 
						||
| 
								 | 
							
								 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * THE BSD LICENSE
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Redistribution and use in source and binary forms, with or without
							 | 
						||
| 
								 | 
							
								 * modification, are permitted provided that the following conditions
							 | 
						||
| 
								 | 
							
								 * are met:
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * 1. Redistributions of source code must retain the above copyright
							 | 
						||
| 
								 | 
							
								 *    notice, this list of conditions and the following disclaimer.
							 | 
						||
| 
								 | 
							
								 * 2. Redistributions in binary form must reproduce the above copyright
							 | 
						||
| 
								 | 
							
								 *    notice, this list of conditions and the following disclaimer in the
							 | 
						||
| 
								 | 
							
								 *    documentation and/or other materials provided with the distribution.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
							 | 
						||
| 
								 | 
							
								 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
							 | 
						||
| 
								 | 
							
								 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
							 | 
						||
| 
								 | 
							
								 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
							 | 
						||
| 
								 | 
							
								 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
							 | 
						||
| 
								 | 
							
								 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
							 | 
						||
| 
								 | 
							
								 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
							 | 
						||
| 
								 | 
							
								 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
							 | 
						||
| 
								 | 
							
								 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
							 | 
						||
| 
								 | 
							
								 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
							 | 
						||
| 
								 | 
							
								 *************************************************************************/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef OPENCV_FLANN_KDTREE_INDEX_H_
							 | 
						||
| 
								 | 
							
								#define OPENCV_FLANN_KDTREE_INDEX_H_
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//! @cond IGNORED
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <algorithm>
							 | 
						||
| 
								 | 
							
								#include <map>
							 | 
						||
| 
								 | 
							
								#include <cstring>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "nn_index.h"
							 | 
						||
| 
								 | 
							
								#include "dynamic_bitset.h"
							 | 
						||
| 
								 | 
							
								#include "matrix.h"
							 | 
						||
| 
								 | 
							
								#include "result_set.h"
							 | 
						||
| 
								 | 
							
								#include "heap.h"
							 | 
						||
| 
								 | 
							
								#include "allocator.h"
							 | 
						||
| 
								 | 
							
								#include "random.h"
							 | 
						||
| 
								 | 
							
								#include "saving.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace cvflann
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct KDTreeIndexParams : public IndexParams
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    KDTreeIndexParams(int trees = 4)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        (*this)["algorithm"] = FLANN_INDEX_KDTREE;
							 | 
						||
| 
								 | 
							
								        (*this)["trees"] = trees;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Randomized kd-tree index
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Contains the k-d trees and other information for indexing a set of points
							 | 
						||
| 
								 | 
							
								 * for nearest-neighbor matching.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								template <typename Distance>
							 | 
						||
| 
								 | 
							
								class KDTreeIndex : public NNIndex<Distance>
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::ElementType ElementType;
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::ResultType DistanceType;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * KDTree constructor
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *          inputData = dataset with the input features
							 | 
						||
| 
								 | 
							
								     *          params = parameters passed to the kdtree algorithm
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    KDTreeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeIndexParams(),
							 | 
						||
| 
								 | 
							
								                Distance d = Distance() ) :
							 | 
						||
| 
								 | 
							
								        dataset_(inputData), index_params_(params), distance_(d)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        size_ = dataset_.rows;
							 | 
						||
| 
								 | 
							
								        veclen_ = dataset_.cols;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        trees_ = get_param(index_params_,"trees",4);
							 | 
						||
| 
								 | 
							
								        tree_roots_ = new NodePtr[trees_];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // Create a permutable array of indices to the input vectors.
							 | 
						||
| 
								 | 
							
								        vind_.resize(size_);
							 | 
						||
| 
								 | 
							
								        for (size_t i = 0; i < size_; ++i) {
							 | 
						||
| 
								 | 
							
								            vind_[i] = int(i);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        mean_ = new DistanceType[veclen_];
							 | 
						||
| 
								 | 
							
								        var_ = new DistanceType[veclen_];
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    KDTreeIndex(const KDTreeIndex&);
							 | 
						||
| 
								 | 
							
								    KDTreeIndex& operator=(const KDTreeIndex&);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Standard destructor
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    ~KDTreeIndex()
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        if (tree_roots_!=NULL) {
							 | 
						||
| 
								 | 
							
								            delete[] tree_roots_;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        delete[] mean_;
							 | 
						||
| 
								 | 
							
								        delete[] var_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Builds the index
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void buildIndex() CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        /* Construct the randomized trees. */
							 | 
						||
| 
								 | 
							
								        for (int i = 0; i < trees_; i++) {
							 | 
						||
| 
								 | 
							
								            /* Randomize the order of vectors to allow for unbiased sampling. */
							 | 
						||
| 
								 | 
							
								#ifndef OPENCV_FLANN_USE_STD_RAND
							 | 
						||
| 
								 | 
							
								            cv::randShuffle(vind_);
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								            std::random_shuffle(vind_.begin(), vind_.end());
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            tree_roots_[i] = divideTree(&vind_[0], int(size_) );
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    flann_algorithm_t getType() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return FLANN_INDEX_KDTREE;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void saveIndex(FILE* stream) CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        save_value(stream, trees_);
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<trees_; ++i) {
							 | 
						||
| 
								 | 
							
								            save_tree(stream, tree_roots_[i]);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void loadIndex(FILE* stream) CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        load_value(stream, trees_);
							 | 
						||
| 
								 | 
							
								        if (tree_roots_!=NULL) {
							 | 
						||
| 
								 | 
							
								            delete[] tree_roots_;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        tree_roots_ = new NodePtr[trees_];
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<trees_; ++i) {
							 | 
						||
| 
								 | 
							
								            load_tree(stream,tree_roots_[i]);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        index_params_["algorithm"] = getType();
							 | 
						||
| 
								 | 
							
								        index_params_["trees"] = tree_roots_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     *  Returns size of index.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    size_t size() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return size_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Returns the length of an index feature.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    size_t veclen() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return veclen_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Computes the inde memory usage
							 | 
						||
| 
								 | 
							
								     * Returns: memory used by the index
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    int usedMemory() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return int(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int));  // pool memory and vind array memory
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Find set of nearest neighbors to vec. Their indices are stored inside
							 | 
						||
| 
								 | 
							
								     * the result object.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     result = the result object in which the indices of the nearest-neighbors are stored
							 | 
						||
| 
								 | 
							
								     *     vec = the vector for which to search the nearest neighbors
							 | 
						||
| 
								 | 
							
								     *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        const int maxChecks = get_param(searchParams,"checks", 32);
							 | 
						||
| 
								 | 
							
								        const float epsError = 1+get_param(searchParams,"eps",0.0f);
							 | 
						||
| 
								 | 
							
								        const bool explore_all_trees = get_param(searchParams,"explore_all_trees",false);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (maxChecks==FLANN_CHECKS_UNLIMITED) {
							 | 
						||
| 
								 | 
							
								            getExactNeighbors(result, vec, epsError);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            getNeighbors(result, vec, maxChecks, epsError, explore_all_trees);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    IndexParams getParameters() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return index_params_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								private:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /*--------------------- Internal Data Structures --------------------------*/
							 | 
						||
| 
								 | 
							
								    struct Node
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * Dimension used for subdivision.
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        int divfeat;
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * The values used for subdivision.
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        DistanceType divval;
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * The child nodes.
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        Node* child1, * child2;
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								    typedef Node* NodePtr;
							 | 
						||
| 
								 | 
							
								    typedef BranchStruct<NodePtr, DistanceType> BranchSt;
							 | 
						||
| 
								 | 
							
								    typedef BranchSt* Branch;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void save_tree(FILE* stream, NodePtr tree)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        save_value(stream, *tree);
							 | 
						||
| 
								 | 
							
								        if (tree->child1!=NULL) {
							 | 
						||
| 
								 | 
							
								            save_tree(stream, tree->child1);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        if (tree->child2!=NULL) {
							 | 
						||
| 
								 | 
							
								            save_tree(stream, tree->child2);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void load_tree(FILE* stream, NodePtr& tree)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        tree = pool_.allocate<Node>();
							 | 
						||
| 
								 | 
							
								        load_value(stream, *tree);
							 | 
						||
| 
								 | 
							
								        if (tree->child1!=NULL) {
							 | 
						||
| 
								 | 
							
								            load_tree(stream, tree->child1);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        if (tree->child2!=NULL) {
							 | 
						||
| 
								 | 
							
								            load_tree(stream, tree->child2);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Create a tree node that subdivides the list of vecs from vind[first]
							 | 
						||
| 
								 | 
							
								     * to vind[last].  The routine is called recursively on each sublist.
							 | 
						||
| 
								 | 
							
								     * Place a pointer to this new tree node in the location pTree.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params: pTree = the new node to create
							 | 
						||
| 
								 | 
							
								     *                  first = index of the first vector
							 | 
						||
| 
								 | 
							
								     *                  last = index of the last vector
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    NodePtr divideTree(int* ind, int count)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        NodePtr node = pool_.allocate<Node>(); // allocate memory
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        /* If too few exemplars remain, then make this a leaf node. */
							 | 
						||
| 
								 | 
							
								        if ( count == 1) {
							 | 
						||
| 
								 | 
							
								            node->child1 = node->child2 = NULL;    /* Mark as leaf node. */
							 | 
						||
| 
								 | 
							
								            node->divfeat = *ind;    /* Store index of this vec. */
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            int idx;
							 | 
						||
| 
								 | 
							
								            int cutfeat;
							 | 
						||
| 
								 | 
							
								            DistanceType cutval;
							 | 
						||
| 
								 | 
							
								            meanSplit(ind, count, idx, cutfeat, cutval);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            node->divfeat = cutfeat;
							 | 
						||
| 
								 | 
							
								            node->divval = cutval;
							 | 
						||
| 
								 | 
							
								            node->child1 = divideTree(ind, idx);
							 | 
						||
| 
								 | 
							
								            node->child2 = divideTree(ind+idx, count-idx);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        return node;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Choose which feature to use in order to subdivide this set of vectors.
							 | 
						||
| 
								 | 
							
								     * Make a random choice among those with the highest variance, and use
							 | 
						||
| 
								 | 
							
								     * its variance as the threshold value.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void meanSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        memset(mean_,0,veclen_*sizeof(DistanceType));
							 | 
						||
| 
								 | 
							
								        memset(var_,0,veclen_*sizeof(DistanceType));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        /* Compute mean values.  Only the first SAMPLE_MEAN values need to be
							 | 
						||
| 
								 | 
							
								            sampled to get a good estimate.
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        int cnt = std::min((int)SAMPLE_MEAN+1, count);
							 | 
						||
| 
								 | 
							
								        for (int j = 0; j < cnt; ++j) {
							 | 
						||
| 
								 | 
							
								            ElementType* v = dataset_[ind[j]];
							 | 
						||
| 
								 | 
							
								            for (size_t k=0; k<veclen_; ++k) {
							 | 
						||
| 
								 | 
							
								                mean_[k] += v[k];
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        for (size_t k=0; k<veclen_; ++k) {
							 | 
						||
| 
								 | 
							
								            mean_[k] /= cnt;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        /* Compute variances (no need to divide by count). */
							 | 
						||
| 
								 | 
							
								        for (int j = 0; j < cnt; ++j) {
							 | 
						||
| 
								 | 
							
								            ElementType* v = dataset_[ind[j]];
							 | 
						||
| 
								 | 
							
								            for (size_t k=0; k<veclen_; ++k) {
							 | 
						||
| 
								 | 
							
								                DistanceType dist = v[k] - mean_[k];
							 | 
						||
| 
								 | 
							
								                var_[k] += dist * dist;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        /* Select one of the highest variance indices at random. */
							 | 
						||
| 
								 | 
							
								        cutfeat = selectDivision(var_);
							 | 
						||
| 
								 | 
							
								        cutval = mean_[cutfeat];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        int lim1, lim2;
							 | 
						||
| 
								 | 
							
								        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (lim1>count/2) index = lim1;
							 | 
						||
| 
								 | 
							
								        else if (lim2<count/2) index = lim2;
							 | 
						||
| 
								 | 
							
								        else index = count/2;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        /* If either list is empty, it means that all remaining features
							 | 
						||
| 
								 | 
							
								         * are identical. Split in the middle to maintain a balanced tree.
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        if ((lim1==count)||(lim2==0)) index = count/2;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Select the top RAND_DIM largest values from v and return the index of
							 | 
						||
| 
								 | 
							
								     * one of these selected at random.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    int selectDivision(DistanceType* v)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        int num = 0;
							 | 
						||
| 
								 | 
							
								        size_t topind[RAND_DIM];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        /* Create a list of the indices of the top RAND_DIM values. */
							 | 
						||
| 
								 | 
							
								        for (size_t i = 0; i < veclen_; ++i) {
							 | 
						||
| 
								 | 
							
								            if ((num < RAND_DIM)||(v[i] > v[topind[num-1]])) {
							 | 
						||
| 
								 | 
							
								                /* Put this element at end of topind. */
							 | 
						||
| 
								 | 
							
								                if (num < RAND_DIM) {
							 | 
						||
| 
								 | 
							
								                    topind[num++] = i;            /* Add to list. */
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								                else {
							 | 
						||
| 
								 | 
							
								                    topind[num-1] = i;         /* Replace last element. */
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								                /* Bubble end value down to right location by repeated swapping. */
							 | 
						||
| 
								 | 
							
								                int j = num - 1;
							 | 
						||
| 
								 | 
							
								                while (j > 0  &&  v[topind[j]] > v[topind[j-1]]) {
							 | 
						||
| 
								 | 
							
								                    std::swap(topind[j], topind[j-1]);
							 | 
						||
| 
								 | 
							
								                    --j;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        /* Select a random integer in range [0,num-1], and return that index. */
							 | 
						||
| 
								 | 
							
								        int rnd = rand_int(num);
							 | 
						||
| 
								 | 
							
								        return (int)topind[rnd];
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     *  Subdivide the list of points by a plane perpendicular on axe corresponding
							 | 
						||
| 
								 | 
							
								     *  to the 'cutfeat' dimension at 'cutval' position.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     *  On return:
							 | 
						||
| 
								 | 
							
								     *  dataset[ind[0..lim1-1]][cutfeat]<cutval
							 | 
						||
| 
								 | 
							
								     *  dataset[ind[lim1..lim2-1]][cutfeat]==cutval
							 | 
						||
| 
								 | 
							
								     *  dataset[ind[lim2..count]][cutfeat]>cutval
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        /* Move vector indices for left subtree to front of list. */
							 | 
						||
| 
								 | 
							
								        int left = 0;
							 | 
						||
| 
								 | 
							
								        int right = count-1;
							 | 
						||
| 
								 | 
							
								        for (;; ) {
							 | 
						||
| 
								 | 
							
								            while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
							 | 
						||
| 
								 | 
							
								            while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
							 | 
						||
| 
								 | 
							
								            if (left>right) break;
							 | 
						||
| 
								 | 
							
								            std::swap(ind[left], ind[right]); ++left; --right;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        lim1 = left;
							 | 
						||
| 
								 | 
							
								        right = count-1;
							 | 
						||
| 
								 | 
							
								        for (;; ) {
							 | 
						||
| 
								 | 
							
								            while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
							 | 
						||
| 
								 | 
							
								            while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
							 | 
						||
| 
								 | 
							
								            if (left>right) break;
							 | 
						||
| 
								 | 
							
								            std::swap(ind[left], ind[right]); ++left; --right;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        lim2 = left;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Performs an exact nearest neighbor search. The exact search performs a full
							 | 
						||
| 
								 | 
							
								     * traversal of the tree.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void getExactNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, float epsError)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        //		checkID -= 1;  /* Set a different unique ID for each search. */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (trees_ > 1) {
							 | 
						||
| 
								 | 
							
								            fprintf(stderr,"It doesn't make any sense to use more than one tree for exact search");
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        if (trees_>0) {
							 | 
						||
| 
								 | 
							
								            searchLevelExact(result, vec, tree_roots_[0], 0.0, epsError);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        CV_Assert(result.full());
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Performs the approximate nearest-neighbor search. The search is approximate
							 | 
						||
| 
								 | 
							
								     * because the tree traversal is abandoned after a given number of descends in
							 | 
						||
| 
								 | 
							
								     * the tree.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void getNeighbors(ResultSet<DistanceType>& result, const ElementType* vec,
							 | 
						||
| 
								 | 
							
								                      int maxCheck, float epsError, bool explore_all_trees = false)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        int i;
							 | 
						||
| 
								 | 
							
								        BranchSt branch;
							 | 
						||
| 
								 | 
							
								        int checkCount = 0;
							 | 
						||
| 
								 | 
							
								        DynamicBitset checked(size_);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // Priority queue storing intermediate branches in the best-bin-first search
							 | 
						||
| 
								 | 
							
								        const cv::Ptr<Heap<BranchSt>>& heap = Heap<BranchSt>::getPooledInstance(cv::utils::getThreadID(), (int)size_);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        /* Search once through each tree down to root. */
							 | 
						||
| 
								 | 
							
								        for (i = 0; i < trees_; ++i) {
							 | 
						||
| 
								 | 
							
								            searchLevel(result, vec, tree_roots_[i], 0, checkCount, maxCheck,
							 | 
						||
| 
								 | 
							
								                        epsError, heap, checked, explore_all_trees);
							 | 
						||
| 
								 | 
							
								            if (!explore_all_trees && (checkCount >= maxCheck) && result.full())
							 | 
						||
| 
								 | 
							
								                break;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        /* Keep searching other branches from heap until finished. */
							 | 
						||
| 
								 | 
							
								        while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) {
							 | 
						||
| 
								 | 
							
								            searchLevel(result, vec, branch.node, branch.mindist, checkCount, maxCheck,
							 | 
						||
| 
								 | 
							
								                        epsError, heap, checked, false);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        CV_Assert(result.full());
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     *  Search starting from a given node of the tree.  Based on any mismatches at
							 | 
						||
| 
								 | 
							
								     *  higher levels, all exemplars below this level must have a distance of
							 | 
						||
| 
								 | 
							
								     *  at least "mindistsq".
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, NodePtr node, DistanceType mindist, int& checkCount, int maxCheck,
							 | 
						||
| 
								 | 
							
								                     float epsError, const cv::Ptr<Heap<BranchSt>>& heap, DynamicBitset& checked, bool explore_all_trees = false)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        if (result_set.worstDist()<mindist) {
							 | 
						||
| 
								 | 
							
								            //			printf("Ignoring branch, too far\n");
							 | 
						||
| 
								 | 
							
								            return;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        /* If this is a leaf node, then do check and return. */
							 | 
						||
| 
								 | 
							
								        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
							 | 
						||
| 
								 | 
							
								            /*  Do not check same node more than once when searching multiple trees.
							 | 
						||
| 
								 | 
							
								                Once a vector is checked, we set its location in vind to the
							 | 
						||
| 
								 | 
							
								                current checkID.
							 | 
						||
| 
								 | 
							
								             */
							 | 
						||
| 
								 | 
							
								            int index = node->divfeat;
							 | 
						||
| 
								 | 
							
								            if ( checked.test(index) ||
							 | 
						||
| 
								 | 
							
								                 (!explore_all_trees && (checkCount>=maxCheck) && result_set.full()) ) {
							 | 
						||
| 
								 | 
							
								                return;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            checked.set(index);
							 | 
						||
| 
								 | 
							
								            checkCount++;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            DistanceType dist = distance_(dataset_[index], vec, veclen_);
							 | 
						||
| 
								 | 
							
								            result_set.addPoint(dist,index);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            return;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        /* Which child branch should be taken first? */
							 | 
						||
| 
								 | 
							
								        ElementType val = vec[node->divfeat];
							 | 
						||
| 
								 | 
							
								        DistanceType diff = val - node->divval;
							 | 
						||
| 
								 | 
							
								        NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
							 | 
						||
| 
								 | 
							
								        NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        /* Create a branch record for the branch not taken.  Add distance
							 | 
						||
| 
								 | 
							
								            of this feature boundary (we don't attempt to correct for any
							 | 
						||
| 
								 | 
							
								            use of this feature in a parent node, which is unlikely to
							 | 
						||
| 
								 | 
							
								            happen and would have only a small effect).  Don't bother
							 | 
						||
| 
								 | 
							
								            adding more branches to heap after halfway point, as cost of
							 | 
						||
| 
								 | 
							
								            adding exceeds their value.
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
							 | 
						||
| 
								 | 
							
								        //		if (2 * checkCount < maxCheck  ||  !result.full()) {
							 | 
						||
| 
								 | 
							
								        if ((new_distsq*epsError < result_set.worstDist())||  !result_set.full()) {
							 | 
						||
| 
								 | 
							
								            heap->insert( BranchSt(otherChild, new_distsq) );
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        /* Call recursively to search next level down. */
							 | 
						||
| 
								 | 
							
								        searchLevel(result_set, vec, bestChild, mindist, checkCount, maxCheck, epsError, heap, checked);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Performs an exact search in the tree starting from a node.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void searchLevelExact(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindist, const float epsError)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        /* If this is a leaf node, then do check and return. */
							 | 
						||
| 
								 | 
							
								        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
							 | 
						||
| 
								 | 
							
								            int index = node->divfeat;
							 | 
						||
| 
								 | 
							
								            DistanceType dist = distance_(dataset_[index], vec, veclen_);
							 | 
						||
| 
								 | 
							
								            result_set.addPoint(dist,index);
							 | 
						||
| 
								 | 
							
								            return;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        /* Which child branch should be taken first? */
							 | 
						||
| 
								 | 
							
								        ElementType val = vec[node->divfeat];
							 | 
						||
| 
								 | 
							
								        DistanceType diff = val - node->divval;
							 | 
						||
| 
								 | 
							
								        NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
							 | 
						||
| 
								 | 
							
								        NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        /* Create a branch record for the branch not taken.  Add distance
							 | 
						||
| 
								 | 
							
								            of this feature boundary (we don't attempt to correct for any
							 | 
						||
| 
								 | 
							
								            use of this feature in a parent node, which is unlikely to
							 | 
						||
| 
								 | 
							
								            happen and would have only a small effect).  Don't bother
							 | 
						||
| 
								 | 
							
								            adding more branches to heap after halfway point, as cost of
							 | 
						||
| 
								 | 
							
								            adding exceeds their value.
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        /* Call recursively to search next level down. */
							 | 
						||
| 
								 | 
							
								        searchLevelExact(result_set, vec, bestChild, mindist, epsError);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (new_distsq*epsError<=result_set.worstDist()) {
							 | 
						||
| 
								 | 
							
								            searchLevelExact(result_set, vec, otherChild, new_distsq, epsError);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								private:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    enum
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * To improve efficiency, only SAMPLE_MEAN random values are used to
							 | 
						||
| 
								 | 
							
								         * compute the mean and variance at each level when building a tree.
							 | 
						||
| 
								 | 
							
								         * A value of 100 seems to perform as well as using all values.
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        SAMPLE_MEAN = 100,
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * Top random dimensions to consider
							 | 
						||
| 
								 | 
							
								         *
							 | 
						||
| 
								 | 
							
								         * When creating random trees, the dimension on which to subdivide is
							 | 
						||
| 
								 | 
							
								         * selected at random from among the top RAND_DIM dimensions with the
							 | 
						||
| 
								 | 
							
								         * highest variance.  A value of 5 works well.
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        RAND_DIM=5
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Number of randomized trees that are used
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    int trees_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     *  Array of indices to vectors in the dataset.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    std::vector<int> vind_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * The dataset used by this index
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    const Matrix<ElementType> dataset_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    IndexParams index_params_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    size_t size_;
							 | 
						||
| 
								 | 
							
								    size_t veclen_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    DistanceType* mean_;
							 | 
						||
| 
								 | 
							
								    DistanceType* var_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Array of k-d trees used to find neighbours.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    NodePtr* tree_roots_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Pooled memory allocator.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Using a pooled memory allocator is more efficient
							 | 
						||
| 
								 | 
							
								     * than allocating memory directly when there is a large
							 | 
						||
| 
								 | 
							
								     * number small of memory allocations.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    PooledAllocator pool_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Distance distance_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								};   // class KDTreeForest
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//! @endcond
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif //OPENCV_FLANN_KDTREE_INDEX_H_
							 |