You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
	
	
		
			646 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
		
		
			
		
	
	
			646 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
| 
								 
											3 years ago
										 
									 | 
							
								/***********************************************************************
							 | 
						||
| 
								 | 
							
								 * Software License Agreement (BSD License)
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
							 | 
						||
| 
								 | 
							
								 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * THE BSD LICENSE
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Redistribution and use in source and binary forms, with or without
							 | 
						||
| 
								 | 
							
								 * modification, are permitted provided that the following conditions
							 | 
						||
| 
								 | 
							
								 * are met:
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * 1. Redistributions of source code must retain the above copyright
							 | 
						||
| 
								 | 
							
								 *    notice, this list of conditions and the following disclaimer.
							 | 
						||
| 
								 | 
							
								 * 2. Redistributions in binary form must reproduce the above copyright
							 | 
						||
| 
								 | 
							
								 *    notice, this list of conditions and the following disclaimer in the
							 | 
						||
| 
								 | 
							
								 *    documentation and/or other materials provided with the distribution.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
							 | 
						||
| 
								 | 
							
								 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
							 | 
						||
| 
								 | 
							
								 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
							 | 
						||
| 
								 | 
							
								 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
							 | 
						||
| 
								 | 
							
								 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
							 | 
						||
| 
								 | 
							
								 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
							 | 
						||
| 
								 | 
							
								 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
							 | 
						||
| 
								 | 
							
								 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
							 | 
						||
| 
								 | 
							
								 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
							 | 
						||
| 
								 | 
							
								 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
							 | 
						||
| 
								 | 
							
								 *************************************************************************/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
							 | 
						||
| 
								 | 
							
								#define OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//! @cond IGNORED
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <algorithm>
							 | 
						||
| 
								 | 
							
								#include <map>
							 | 
						||
| 
								 | 
							
								#include <cstring>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "nn_index.h"
							 | 
						||
| 
								 | 
							
								#include "matrix.h"
							 | 
						||
| 
								 | 
							
								#include "result_set.h"
							 | 
						||
| 
								 | 
							
								#include "heap.h"
							 | 
						||
| 
								 | 
							
								#include "allocator.h"
							 | 
						||
| 
								 | 
							
								#include "random.h"
							 | 
						||
| 
								 | 
							
								#include "saving.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace cvflann
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct KDTreeSingleIndexParams : public IndexParams
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true, int dim = -1)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        (*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE;
							 | 
						||
| 
								 | 
							
								        (*this)["leaf_max_size"] = leaf_max_size;
							 | 
						||
| 
								 | 
							
								        (*this)["reorder"] = reorder;
							 | 
						||
| 
								 | 
							
								        (*this)["dim"] = dim;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Randomized kd-tree index
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Contains the k-d trees and other information for indexing a set of points
							 | 
						||
| 
								 | 
							
								 * for nearest-neighbor matching.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								template <typename Distance>
							 | 
						||
| 
								 | 
							
								class KDTreeSingleIndex : public NNIndex<Distance>
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::ElementType ElementType;
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::ResultType DistanceType;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * KDTree constructor
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *          inputData = dataset with the input features
							 | 
						||
| 
								 | 
							
								     *          params = parameters passed to the kdtree algorithm
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    KDTreeSingleIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeSingleIndexParams(),
							 | 
						||
| 
								 | 
							
								                      Distance d = Distance() ) :
							 | 
						||
| 
								 | 
							
								        dataset_(inputData), index_params_(params), distance_(d)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        size_ = dataset_.rows;
							 | 
						||
| 
								 | 
							
								        dim_ = dataset_.cols;
							 | 
						||
| 
								 | 
							
								        root_node_ = 0;
							 | 
						||
| 
								 | 
							
								        int dim_param = get_param(params,"dim",-1);
							 | 
						||
| 
								 | 
							
								        if (dim_param>0) dim_ = dim_param;
							 | 
						||
| 
								 | 
							
								        leaf_max_size_ = get_param(params,"leaf_max_size",10);
							 | 
						||
| 
								 | 
							
								        reorder_ = get_param(params,"reorder",true);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // Create a permutable array of indices to the input vectors.
							 | 
						||
| 
								 | 
							
								        vind_.resize(size_);
							 | 
						||
| 
								 | 
							
								        for (size_t i = 0; i < size_; i++) {
							 | 
						||
| 
								 | 
							
								            vind_[i] = (int)i;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    KDTreeSingleIndex(const KDTreeSingleIndex&);
							 | 
						||
| 
								 | 
							
								    KDTreeSingleIndex& operator=(const KDTreeSingleIndex&);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Standard destructor
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    ~KDTreeSingleIndex()
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        if (reorder_) delete[] data_.data;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Builds the index
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void buildIndex() CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        computeBoundingBox(root_bbox_);
							 | 
						||
| 
								 | 
							
								        root_node_ = divideTree(0, (int)size_, root_bbox_ );   // construct the tree
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (reorder_) {
							 | 
						||
| 
								 | 
							
								            delete[] data_.data;
							 | 
						||
| 
								 | 
							
								            data_ = cvflann::Matrix<ElementType>(new ElementType[size_*dim_], size_, dim_);
							 | 
						||
| 
								 | 
							
								            for (size_t i=0; i<size_; ++i) {
							 | 
						||
| 
								 | 
							
								                for (size_t j=0; j<dim_; ++j) {
							 | 
						||
| 
								 | 
							
								                    data_[i][j] = dataset_[vind_[i]][j];
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            data_ = dataset_;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    flann_algorithm_t getType() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return FLANN_INDEX_KDTREE_SINGLE;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void saveIndex(FILE* stream) CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        save_value(stream, size_);
							 | 
						||
| 
								 | 
							
								        save_value(stream, dim_);
							 | 
						||
| 
								 | 
							
								        save_value(stream, root_bbox_);
							 | 
						||
| 
								 | 
							
								        save_value(stream, reorder_);
							 | 
						||
| 
								 | 
							
								        save_value(stream, leaf_max_size_);
							 | 
						||
| 
								 | 
							
								        save_value(stream, vind_);
							 | 
						||
| 
								 | 
							
								        if (reorder_) {
							 | 
						||
| 
								 | 
							
								            save_value(stream, data_);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        save_tree(stream, root_node_);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void loadIndex(FILE* stream) CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        load_value(stream, size_);
							 | 
						||
| 
								 | 
							
								        load_value(stream, dim_);
							 | 
						||
| 
								 | 
							
								        load_value(stream, root_bbox_);
							 | 
						||
| 
								 | 
							
								        load_value(stream, reorder_);
							 | 
						||
| 
								 | 
							
								        load_value(stream, leaf_max_size_);
							 | 
						||
| 
								 | 
							
								        load_value(stream, vind_);
							 | 
						||
| 
								 | 
							
								        if (reorder_) {
							 | 
						||
| 
								 | 
							
								            load_value(stream, data_);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            data_ = dataset_;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        load_tree(stream, root_node_);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        index_params_["algorithm"] = getType();
							 | 
						||
| 
								 | 
							
								        index_params_["leaf_max_size"] = leaf_max_size_;
							 | 
						||
| 
								 | 
							
								        index_params_["reorder"] = reorder_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     *  Returns size of index.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    size_t size() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return size_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Returns the length of an index feature.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    size_t veclen() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return dim_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Computes the inde memory usage
							 | 
						||
| 
								 | 
							
								     * Returns: memory used by the index
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    int usedMemory() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return (int)(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int));  // pool memory and vind array memory
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * \brief Perform k-nearest neighbor search
							 | 
						||
| 
								 | 
							
								     * \param[in] queries The query points for which to find the nearest neighbors
							 | 
						||
| 
								 | 
							
								     * \param[out] indices The indices of the nearest neighbors found
							 | 
						||
| 
								 | 
							
								     * \param[out] dists Distances to the nearest neighbors found
							 | 
						||
| 
								 | 
							
								     * \param[in] knn Number of nearest neighbors to return
							 | 
						||
| 
								 | 
							
								     * \param[in] params Search parameters
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        CV_Assert(queries.cols == veclen());
							 | 
						||
| 
								 | 
							
								        CV_Assert(indices.rows >= queries.rows);
							 | 
						||
| 
								 | 
							
								        CV_Assert(dists.rows >= queries.rows);
							 | 
						||
| 
								 | 
							
								        CV_Assert(int(indices.cols) >= knn);
							 | 
						||
| 
								 | 
							
								        CV_Assert(int(dists.cols) >= knn);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        KNNSimpleResultSet<DistanceType> resultSet(knn);
							 | 
						||
| 
								 | 
							
								        for (size_t i = 0; i < queries.rows; i++) {
							 | 
						||
| 
								 | 
							
								            resultSet.init(indices[i], dists[i]);
							 | 
						||
| 
								 | 
							
								            findNeighbors(resultSet, queries[i], params);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    IndexParams getParameters() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return index_params_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Find set of nearest neighbors to vec. Their indices are stored inside
							 | 
						||
| 
								 | 
							
								     * the result object.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     result = the result object in which the indices of the nearest-neighbors are stored
							 | 
						||
| 
								 | 
							
								     *     vec = the vector for which to search the nearest neighbors
							 | 
						||
| 
								 | 
							
								     *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        float epsError = 1+get_param(searchParams,"eps",0.0f);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        std::vector<DistanceType> dists(dim_,0);
							 | 
						||
| 
								 | 
							
								        DistanceType distsq = computeInitialDistances(vec, dists);
							 | 
						||
| 
								 | 
							
								        searchLevel(result, vec, root_node_, distsq, dists, epsError);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								private:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /*--------------------- Internal Data Structures --------------------------*/
							 | 
						||
| 
								 | 
							
								    struct Node
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * Indices of points in leaf node
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        int left, right;
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * Dimension used for subdivision.
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        int divfeat;
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * The values used for subdivision.
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        DistanceType divlow, divhigh;
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * The child nodes.
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        Node* child1, * child2;
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								    typedef Node* NodePtr;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    struct Interval
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        DistanceType low, high;
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    typedef std::vector<Interval> BoundingBox;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    typedef BranchStruct<NodePtr, DistanceType> BranchSt;
							 | 
						||
| 
								 | 
							
								    typedef BranchSt* Branch;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void save_tree(FILE* stream, NodePtr tree)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        save_value(stream, *tree);
							 | 
						||
| 
								 | 
							
								        if (tree->child1!=NULL) {
							 | 
						||
| 
								 | 
							
								            save_tree(stream, tree->child1);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        if (tree->child2!=NULL) {
							 | 
						||
| 
								 | 
							
								            save_tree(stream, tree->child2);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void load_tree(FILE* stream, NodePtr& tree)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        tree = pool_.allocate<Node>();
							 | 
						||
| 
								 | 
							
								        load_value(stream, *tree);
							 | 
						||
| 
								 | 
							
								        if (tree->child1!=NULL) {
							 | 
						||
| 
								 | 
							
								            load_tree(stream, tree->child1);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        if (tree->child2!=NULL) {
							 | 
						||
| 
								 | 
							
								            load_tree(stream, tree->child2);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void computeBoundingBox(BoundingBox& bbox)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        bbox.resize(dim_);
							 | 
						||
| 
								 | 
							
								        for (size_t i=0; i<dim_; ++i) {
							 | 
						||
| 
								 | 
							
								            bbox[i].low = (DistanceType)dataset_[0][i];
							 | 
						||
| 
								 | 
							
								            bbox[i].high = (DistanceType)dataset_[0][i];
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        for (size_t k=1; k<dataset_.rows; ++k) {
							 | 
						||
| 
								 | 
							
								            for (size_t i=0; i<dim_; ++i) {
							 | 
						||
| 
								 | 
							
								                if (dataset_[k][i]<bbox[i].low) bbox[i].low = (DistanceType)dataset_[k][i];
							 | 
						||
| 
								 | 
							
								                if (dataset_[k][i]>bbox[i].high) bbox[i].high = (DistanceType)dataset_[k][i];
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Create a tree node that subdivides the list of vecs from vind[first]
							 | 
						||
| 
								 | 
							
								     * to vind[last].  The routine is called recursively on each sublist.
							 | 
						||
| 
								 | 
							
								     * Place a pointer to this new tree node in the location pTree.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params: pTree = the new node to create
							 | 
						||
| 
								 | 
							
								     *                  first = index of the first vector
							 | 
						||
| 
								 | 
							
								     *                  last = index of the last vector
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    NodePtr divideTree(int left, int right, BoundingBox& bbox)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        NodePtr node = pool_.allocate<Node>(); // allocate memory
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        /* If too few exemplars remain, then make this a leaf node. */
							 | 
						||
| 
								 | 
							
								        if ( (right-left) <= leaf_max_size_) {
							 | 
						||
| 
								 | 
							
								            node->child1 = node->child2 = NULL;    /* Mark as leaf node. */
							 | 
						||
| 
								 | 
							
								            node->left = left;
							 | 
						||
| 
								 | 
							
								            node->right = right;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            // compute bounding-box of leaf points
							 | 
						||
| 
								 | 
							
								            for (size_t i=0; i<dim_; ++i) {
							 | 
						||
| 
								 | 
							
								                bbox[i].low = (DistanceType)dataset_[vind_[left]][i];
							 | 
						||
| 
								 | 
							
								                bbox[i].high = (DistanceType)dataset_[vind_[left]][i];
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            for (int k=left+1; k<right; ++k) {
							 | 
						||
| 
								 | 
							
								                for (size_t i=0; i<dim_; ++i) {
							 | 
						||
| 
								 | 
							
								                    if (bbox[i].low>dataset_[vind_[k]][i]) bbox[i].low=(DistanceType)dataset_[vind_[k]][i];
							 | 
						||
| 
								 | 
							
								                    if (bbox[i].high<dataset_[vind_[k]][i]) bbox[i].high=(DistanceType)dataset_[vind_[k]][i];
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            int idx;
							 | 
						||
| 
								 | 
							
								            int cutfeat;
							 | 
						||
| 
								 | 
							
								            DistanceType cutval;
							 | 
						||
| 
								 | 
							
								            middleSplit_(&vind_[0]+left, right-left, idx, cutfeat, cutval, bbox);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            node->divfeat = cutfeat;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            BoundingBox left_bbox(bbox);
							 | 
						||
| 
								 | 
							
								            left_bbox[cutfeat].high = cutval;
							 | 
						||
| 
								 | 
							
								            node->child1 = divideTree(left, left+idx, left_bbox);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            BoundingBox right_bbox(bbox);
							 | 
						||
| 
								 | 
							
								            right_bbox[cutfeat].low = cutval;
							 | 
						||
| 
								 | 
							
								            node->child2 = divideTree(left+idx, right, right_bbox);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            node->divlow = left_bbox[cutfeat].high;
							 | 
						||
| 
								 | 
							
								            node->divhigh = right_bbox[cutfeat].low;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            for (size_t i=0; i<dim_; ++i) {
							 | 
						||
| 
								 | 
							
								                bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
							 | 
						||
| 
								 | 
							
								                bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        return node;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void computeMinMax(int* ind, int count, int dim, ElementType& min_elem, ElementType& max_elem)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        min_elem = dataset_[ind[0]][dim];
							 | 
						||
| 
								 | 
							
								        max_elem = dataset_[ind[0]][dim];
							 | 
						||
| 
								 | 
							
								        for (int i=1; i<count; ++i) {
							 | 
						||
| 
								 | 
							
								            ElementType val = dataset_[ind[i]][dim];
							 | 
						||
| 
								 | 
							
								            if (val<min_elem) min_elem = val;
							 | 
						||
| 
								 | 
							
								            if (val>max_elem) max_elem = val;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        // find the largest span from the approximate bounding box
							 | 
						||
| 
								 | 
							
								        ElementType max_span = bbox[0].high-bbox[0].low;
							 | 
						||
| 
								 | 
							
								        cutfeat = 0;
							 | 
						||
| 
								 | 
							
								        cutval = (bbox[0].high+bbox[0].low)/2;
							 | 
						||
| 
								 | 
							
								        for (size_t i=1; i<dim_; ++i) {
							 | 
						||
| 
								 | 
							
								            ElementType span = bbox[i].high-bbox[i].low;
							 | 
						||
| 
								 | 
							
								            if (span>max_span) {
							 | 
						||
| 
								 | 
							
								                max_span = span;
							 | 
						||
| 
								 | 
							
								                cutfeat = i;
							 | 
						||
| 
								 | 
							
								                cutval = (bbox[i].high+bbox[i].low)/2;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // compute exact span on the found dimension
							 | 
						||
| 
								 | 
							
								        ElementType min_elem, max_elem;
							 | 
						||
| 
								 | 
							
								        computeMinMax(ind, count, cutfeat, min_elem, max_elem);
							 | 
						||
| 
								 | 
							
								        cutval = (min_elem+max_elem)/2;
							 | 
						||
| 
								 | 
							
								        max_span = max_elem - min_elem;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // check if a dimension of a largest span exists
							 | 
						||
| 
								 | 
							
								        size_t k = cutfeat;
							 | 
						||
| 
								 | 
							
								        for (size_t i=0; i<dim_; ++i) {
							 | 
						||
| 
								 | 
							
								            if (i==k) continue;
							 | 
						||
| 
								 | 
							
								            ElementType span = bbox[i].high-bbox[i].low;
							 | 
						||
| 
								 | 
							
								            if (span>max_span) {
							 | 
						||
| 
								 | 
							
								                computeMinMax(ind, count, i, min_elem, max_elem);
							 | 
						||
| 
								 | 
							
								                span = max_elem - min_elem;
							 | 
						||
| 
								 | 
							
								                if (span>max_span) {
							 | 
						||
| 
								 | 
							
								                    max_span = span;
							 | 
						||
| 
								 | 
							
								                    cutfeat = i;
							 | 
						||
| 
								 | 
							
								                    cutval = (min_elem+max_elem)/2;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        int lim1, lim2;
							 | 
						||
| 
								 | 
							
								        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (lim1>count/2) index = lim1;
							 | 
						||
| 
								 | 
							
								        else if (lim2<count/2) index = lim2;
							 | 
						||
| 
								 | 
							
								        else index = count/2;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void middleSplit_(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        const float EPS=0.00001f;
							 | 
						||
| 
								 | 
							
								        DistanceType max_span = bbox[0].high-bbox[0].low;
							 | 
						||
| 
								 | 
							
								        for (size_t i=1; i<dim_; ++i) {
							 | 
						||
| 
								 | 
							
								            DistanceType span = bbox[i].high-bbox[i].low;
							 | 
						||
| 
								 | 
							
								            if (span>max_span) {
							 | 
						||
| 
								 | 
							
								                max_span = span;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        DistanceType max_spread = -1;
							 | 
						||
| 
								 | 
							
								        cutfeat = 0;
							 | 
						||
| 
								 | 
							
								        for (size_t i=0; i<dim_; ++i) {
							 | 
						||
| 
								 | 
							
								            DistanceType span = bbox[i].high-bbox[i].low;
							 | 
						||
| 
								 | 
							
								            if (span>(DistanceType)((1-EPS)*max_span)) {
							 | 
						||
| 
								 | 
							
								                ElementType min_elem, max_elem;
							 | 
						||
| 
								 | 
							
								                computeMinMax(ind, count, (int)i, min_elem, max_elem);
							 | 
						||
| 
								 | 
							
								                DistanceType spread = (DistanceType)(max_elem-min_elem);
							 | 
						||
| 
								 | 
							
								                if (spread>max_spread) {
							 | 
						||
| 
								 | 
							
								                    cutfeat = (int)i;
							 | 
						||
| 
								 | 
							
								                    max_spread = spread;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        // split in the middle
							 | 
						||
| 
								 | 
							
								        DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2;
							 | 
						||
| 
								 | 
							
								        ElementType min_elem, max_elem;
							 | 
						||
| 
								 | 
							
								        computeMinMax(ind, count, cutfeat, min_elem, max_elem);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (split_val<min_elem) cutval = (DistanceType)min_elem;
							 | 
						||
| 
								 | 
							
								        else if (split_val>max_elem) cutval = (DistanceType)max_elem;
							 | 
						||
| 
								 | 
							
								        else cutval = split_val;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        int lim1, lim2;
							 | 
						||
| 
								 | 
							
								        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (lim1>count/2) index = lim1;
							 | 
						||
| 
								 | 
							
								        else if (lim2<count/2) index = lim2;
							 | 
						||
| 
								 | 
							
								        else index = count/2;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     *  Subdivide the list of points by a plane perpendicular on axe corresponding
							 | 
						||
| 
								 | 
							
								     *  to the 'cutfeat' dimension at 'cutval' position.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     *  On return:
							 | 
						||
| 
								 | 
							
								     *  dataset[ind[0..lim1-1]][cutfeat]<cutval
							 | 
						||
| 
								 | 
							
								     *  dataset[ind[lim1..lim2-1]][cutfeat]==cutval
							 | 
						||
| 
								 | 
							
								     *  dataset[ind[lim2..count]][cutfeat]>cutval
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        /* Move vector indices for left subtree to front of list. */
							 | 
						||
| 
								 | 
							
								        int left = 0;
							 | 
						||
| 
								 | 
							
								        int right = count-1;
							 | 
						||
| 
								 | 
							
								        for (;; ) {
							 | 
						||
| 
								 | 
							
								            while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
							 | 
						||
| 
								 | 
							
								            while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
							 | 
						||
| 
								 | 
							
								            if (left>right) break;
							 | 
						||
| 
								 | 
							
								            std::swap(ind[left], ind[right]); ++left; --right;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        /* If either list is empty, it means that all remaining features
							 | 
						||
| 
								 | 
							
								         * are identical. Split in the middle to maintain a balanced tree.
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        lim1 = left;
							 | 
						||
| 
								 | 
							
								        right = count-1;
							 | 
						||
| 
								 | 
							
								        for (;; ) {
							 | 
						||
| 
								 | 
							
								            while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
							 | 
						||
| 
								 | 
							
								            while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
							 | 
						||
| 
								 | 
							
								            if (left>right) break;
							 | 
						||
| 
								 | 
							
								            std::swap(ind[left], ind[right]); ++left; --right;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        lim2 = left;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        DistanceType distsq = 0.0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for (size_t i = 0; i < dim_; ++i) {
							 | 
						||
| 
								 | 
							
								            if (vec[i] < root_bbox_[i].low) {
							 | 
						||
| 
								 | 
							
								                dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, (int)i);
							 | 
						||
| 
								 | 
							
								                distsq += dists[i];
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            if (vec[i] > root_bbox_[i].high) {
							 | 
						||
| 
								 | 
							
								                dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, (int)i);
							 | 
						||
| 
								 | 
							
								                distsq += dists[i];
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        return distsq;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Performs an exact search in the tree starting from a node.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq,
							 | 
						||
| 
								 | 
							
								                     std::vector<DistanceType>& dists, const float epsError)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        /* If this is a leaf node, then do check and return. */
							 | 
						||
| 
								 | 
							
								        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
							 | 
						||
| 
								 | 
							
								            DistanceType worst_dist = result_set.worstDist();
							 | 
						||
| 
								 | 
							
								            if (reorder_) {
							 | 
						||
| 
								 | 
							
								                for (int i=node->left; i<node->right; ++i) {
							 | 
						||
| 
								 | 
							
								                    DistanceType dist = distance_(vec, data_[i], dim_, worst_dist);
							 | 
						||
| 
								 | 
							
								                    if (dist<worst_dist) {
							 | 
						||
| 
								 | 
							
								                        result_set.addPoint(dist,vind_[i]);
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            } else {
							 | 
						||
| 
								 | 
							
								                for (int i=node->left; i<node->right; ++i) {
							 | 
						||
| 
								 | 
							
								                    DistanceType dist = distance_(vec, data_[vind_[i]], dim_, worst_dist);
							 | 
						||
| 
								 | 
							
								                    if (dist<worst_dist) {
							 | 
						||
| 
								 | 
							
								                        result_set.addPoint(dist,vind_[i]);
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            return;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        /* Which child branch should be taken first? */
							 | 
						||
| 
								 | 
							
								        int idx = node->divfeat;
							 | 
						||
| 
								 | 
							
								        ElementType val = vec[idx];
							 | 
						||
| 
								 | 
							
								        DistanceType diff1 = val - node->divlow;
							 | 
						||
| 
								 | 
							
								        DistanceType diff2 = val - node->divhigh;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        NodePtr bestChild;
							 | 
						||
| 
								 | 
							
								        NodePtr otherChild;
							 | 
						||
| 
								 | 
							
								        DistanceType cut_dist;
							 | 
						||
| 
								 | 
							
								        if ((diff1+diff2)<0) {
							 | 
						||
| 
								 | 
							
								            bestChild = node->child1;
							 | 
						||
| 
								 | 
							
								            otherChild = node->child2;
							 | 
						||
| 
								 | 
							
								            cut_dist = distance_.accum_dist(val, node->divhigh, idx);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            bestChild = node->child2;
							 | 
						||
| 
								 | 
							
								            otherChild = node->child1;
							 | 
						||
| 
								 | 
							
								            cut_dist = distance_.accum_dist( val, node->divlow, idx);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        /* Call recursively to search next level down. */
							 | 
						||
| 
								 | 
							
								        searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        DistanceType dst = dists[idx];
							 | 
						||
| 
								 | 
							
								        mindistsq = mindistsq + cut_dist - dst;
							 | 
						||
| 
								 | 
							
								        dists[idx] = cut_dist;
							 | 
						||
| 
								 | 
							
								        if (mindistsq*epsError<=result_set.worstDist()) {
							 | 
						||
| 
								 | 
							
								            searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        dists[idx] = dst;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								private:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * The dataset used by this index
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    const Matrix<ElementType> dataset_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    IndexParams index_params_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    int leaf_max_size_;
							 | 
						||
| 
								 | 
							
								    bool reorder_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     *  Array of indices to vectors in the dataset.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    std::vector<int> vind_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Matrix<ElementType> data_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    size_t size_;
							 | 
						||
| 
								 | 
							
								    size_t dim_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Array of k-d trees used to find neighbours.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    NodePtr root_node_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    BoundingBox root_bbox_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Pooled memory allocator.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Using a pooled memory allocator is more efficient
							 | 
						||
| 
								 | 
							
								     * than allocating memory directly when there is a large
							 | 
						||
| 
								 | 
							
								     * number small of memory allocations.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    PooledAllocator pool_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Distance distance_;
							 | 
						||
| 
								 | 
							
								};   // class KDTree
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//! @endcond
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif //OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
							 |