You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
	
	
		
			1820 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C
		
	
		
		
			
		
	
	
			1820 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C
		
	
| 
								 
											3 years ago
										 
									 | 
							
								/***********************************************************************
							 | 
						||
| 
								 | 
							
								 * Software License Agreement (BSD License)
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
							 | 
						||
| 
								 | 
							
								 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * THE BSD LICENSE
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Redistribution and use in source and binary forms, with or without
							 | 
						||
| 
								 | 
							
								 * modification, are permitted provided that the following conditions
							 | 
						||
| 
								 | 
							
								 * are met:
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * 1. Redistributions of source code must retain the above copyright
							 | 
						||
| 
								 | 
							
								 *    notice, this list of conditions and the following disclaimer.
							 | 
						||
| 
								 | 
							
								 * 2. Redistributions in binary form must reproduce the above copyright
							 | 
						||
| 
								 | 
							
								 *    notice, this list of conditions and the following disclaimer in the
							 | 
						||
| 
								 | 
							
								 *    documentation and/or other materials provided with the distribution.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
							 | 
						||
| 
								 | 
							
								 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
							 | 
						||
| 
								 | 
							
								 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
							 | 
						||
| 
								 | 
							
								 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
							 | 
						||
| 
								 | 
							
								 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
							 | 
						||
| 
								 | 
							
								 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
							 | 
						||
| 
								 | 
							
								 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
							 | 
						||
| 
								 | 
							
								 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
							 | 
						||
| 
								 | 
							
								 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
							 | 
						||
| 
								 | 
							
								 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
							 | 
						||
| 
								 | 
							
								 *************************************************************************/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef OPENCV_FLANN_KMEANS_INDEX_H_
							 | 
						||
| 
								 | 
							
								#define OPENCV_FLANN_KMEANS_INDEX_H_
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//! @cond IGNORED
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <algorithm>
							 | 
						||
| 
								 | 
							
								#include <map>
							 | 
						||
| 
								 | 
							
								#include <limits>
							 | 
						||
| 
								 | 
							
								#include <cmath>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "general.h"
							 | 
						||
| 
								 | 
							
								#include "nn_index.h"
							 | 
						||
| 
								 | 
							
								#include "dist.h"
							 | 
						||
| 
								 | 
							
								#include "matrix.h"
							 | 
						||
| 
								 | 
							
								#include "result_set.h"
							 | 
						||
| 
								 | 
							
								#include "heap.h"
							 | 
						||
| 
								 | 
							
								#include "allocator.h"
							 | 
						||
| 
								 | 
							
								#include "random.h"
							 | 
						||
| 
								 | 
							
								#include "saving.h"
							 | 
						||
| 
								 | 
							
								#include "logger.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define BITS_PER_CHAR 8
							 | 
						||
| 
								 | 
							
								#define BITS_PER_BASE 2 // for DNA/RNA sequences
							 | 
						||
| 
								 | 
							
								#define BASE_PER_CHAR (BITS_PER_CHAR/BITS_PER_BASE)
							 | 
						||
| 
								 | 
							
								#define HISTOS_PER_BASE (1<<BITS_PER_BASE)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace cvflann
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct KMeansIndexParams : public IndexParams
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    KMeansIndexParams(int branching = 32, int iterations = 11,
							 | 
						||
| 
								 | 
							
								                      flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
							 | 
						||
| 
								 | 
							
								                      float cb_index = 0.2, int trees = 1 )
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        (*this)["algorithm"] = FLANN_INDEX_KMEANS;
							 | 
						||
| 
								 | 
							
								        // branching factor
							 | 
						||
| 
								 | 
							
								        (*this)["branching"] = branching;
							 | 
						||
| 
								 | 
							
								        // max iterations to perform in one kmeans clustering (kmeans tree)
							 | 
						||
| 
								 | 
							
								        (*this)["iterations"] = iterations;
							 | 
						||
| 
								 | 
							
								        // algorithm used for picking the initial cluster centers for kmeans tree
							 | 
						||
| 
								 | 
							
								        (*this)["centers_init"] = centers_init;
							 | 
						||
| 
								 | 
							
								        // cluster boundary index. Used when searching the kmeans tree
							 | 
						||
| 
								 | 
							
								        (*this)["cb_index"] = cb_index;
							 | 
						||
| 
								 | 
							
								        // number of kmeans trees to search in
							 | 
						||
| 
								 | 
							
								        (*this)["trees"] = trees;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Hierarchical kmeans index
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Contains a tree constructed through a hierarchical kmeans clustering
							 | 
						||
| 
								 | 
							
								 * and other information for indexing a set of points for nearest-neighbour matching.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								template <typename Distance>
							 | 
						||
| 
								 | 
							
								class KMeansIndex : public NNIndex<Distance>
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::ElementType ElementType;
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::ResultType DistanceType;
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::CentersType CentersType;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::is_kdtree_distance is_kdtree_distance;
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::is_vector_space_distance is_vector_space_distance;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * The function used for choosing the cluster centers.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    centersAlgFunction chooseCenters;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Chooses the initial centers in the k-means clustering in a random manner.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     k = number of centers
							 | 
						||
| 
								 | 
							
								     *     vecs = the dataset of points
							 | 
						||
| 
								 | 
							
								     *     indices = indices in the dataset
							 | 
						||
| 
								 | 
							
								     *     indices_length = length of indices vector
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        UniqueRandom r(indices_length);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        int index;
							 | 
						||
| 
								 | 
							
								        for (index=0; index<k; ++index) {
							 | 
						||
| 
								 | 
							
								            bool duplicate = true;
							 | 
						||
| 
								 | 
							
								            int rnd;
							 | 
						||
| 
								 | 
							
								            while (duplicate) {
							 | 
						||
| 
								 | 
							
								                duplicate = false;
							 | 
						||
| 
								 | 
							
								                rnd = r.next();
							 | 
						||
| 
								 | 
							
								                if (rnd<0) {
							 | 
						||
| 
								 | 
							
								                    centers_length = index;
							 | 
						||
| 
								 | 
							
								                    return;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                centers[index] = indices[rnd];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                for (int j=0; j<index; ++j) {
							 | 
						||
| 
								 | 
							
								                    DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols);
							 | 
						||
| 
								 | 
							
								                    if (sq<1e-16) {
							 | 
						||
| 
								 | 
							
								                        duplicate = true;
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        centers_length = index;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Chooses the initial centers in the k-means using Gonzales' algorithm
							 | 
						||
| 
								 | 
							
								     * so that the centers are spaced apart from each other.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     k = number of centers
							 | 
						||
| 
								 | 
							
								     *     vecs = the dataset of points
							 | 
						||
| 
								 | 
							
								     *     indices = indices in the dataset
							 | 
						||
| 
								 | 
							
								     * Returns:
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        int n = indices_length;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        int rnd = rand_int(n);
							 | 
						||
| 
								 | 
							
								        CV_DbgAssert(rnd >=0 && rnd < n);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        centers[0] = indices[rnd];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        int index;
							 | 
						||
| 
								 | 
							
								        for (index=1; index<k; ++index) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            int best_index = -1;
							 | 
						||
| 
								 | 
							
								            DistanceType best_val = 0;
							 | 
						||
| 
								 | 
							
								            for (int j=0; j<n; ++j) {
							 | 
						||
| 
								 | 
							
								                DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols);
							 | 
						||
| 
								 | 
							
								                for (int i=1; i<index; ++i) {
							 | 
						||
| 
								 | 
							
								                    DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols);
							 | 
						||
| 
								 | 
							
								                    if (tmp_dist<dist) {
							 | 
						||
| 
								 | 
							
								                        dist = tmp_dist;
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								                if (dist>best_val) {
							 | 
						||
| 
								 | 
							
								                    best_val = dist;
							 | 
						||
| 
								 | 
							
								                    best_index = j;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            if (best_index!=-1) {
							 | 
						||
| 
								 | 
							
								                centers[index] = indices[best_index];
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            else {
							 | 
						||
| 
								 | 
							
								                break;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        centers_length = index;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Chooses the initial centers in the k-means using the algorithm
							 | 
						||
| 
								 | 
							
								     * proposed in the KMeans++ paper:
							 | 
						||
| 
								 | 
							
								     * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Implementation of this function was converted from the one provided in Arthur's code.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     k = number of centers
							 | 
						||
| 
								 | 
							
								     *     vecs = the dataset of points
							 | 
						||
| 
								 | 
							
								     *     indices = indices in the dataset
							 | 
						||
| 
								 | 
							
								     * Returns:
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        int n = indices_length;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        double currentPot = 0;
							 | 
						||
| 
								 | 
							
								        DistanceType* closestDistSq = new DistanceType[n];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // Choose one random center and set the closestDistSq values
							 | 
						||
| 
								 | 
							
								        int index = rand_int(n);
							 | 
						||
| 
								 | 
							
								        CV_DbgAssert(index >=0 && index < n);
							 | 
						||
| 
								 | 
							
								        centers[0] = indices[index];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for (int i = 0; i < n; i++) {
							 | 
						||
| 
								 | 
							
								            closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
							 | 
						||
| 
								 | 
							
								            closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
							 | 
						||
| 
								 | 
							
								            currentPot += closestDistSq[i];
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        const int numLocalTries = 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // Choose each center
							 | 
						||
| 
								 | 
							
								        int centerCount;
							 | 
						||
| 
								 | 
							
								        for (centerCount = 1; centerCount < k; centerCount++) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            // Repeat several trials
							 | 
						||
| 
								 | 
							
								            double bestNewPot = -1;
							 | 
						||
| 
								 | 
							
								            int bestNewIndex = -1;
							 | 
						||
| 
								 | 
							
								            for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                // Choose our center - have to be slightly careful to return a valid answer even accounting
							 | 
						||
| 
								 | 
							
								                // for possible rounding errors
							 | 
						||
| 
								 | 
							
								                double randVal = rand_double(currentPot);
							 | 
						||
| 
								 | 
							
								                for (index = 0; index < n-1; index++) {
							 | 
						||
| 
								 | 
							
								                    if (randVal <= closestDistSq[index]) break;
							 | 
						||
| 
								 | 
							
								                    else randVal -= closestDistSq[index];
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                // Compute the new potential
							 | 
						||
| 
								 | 
							
								                double newPot = 0;
							 | 
						||
| 
								 | 
							
								                for (int i = 0; i < n; i++) {
							 | 
						||
| 
								 | 
							
								                    DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
							 | 
						||
| 
								 | 
							
								                    newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                // Store the best result
							 | 
						||
| 
								 | 
							
								                if ((bestNewPot < 0)||(newPot < bestNewPot)) {
							 | 
						||
| 
								 | 
							
								                    bestNewPot = newPot;
							 | 
						||
| 
								 | 
							
								                    bestNewIndex = index;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            // Add the appropriate center
							 | 
						||
| 
								 | 
							
								            centers[centerCount] = indices[bestNewIndex];
							 | 
						||
| 
								 | 
							
								            currentPot = bestNewPot;
							 | 
						||
| 
								 | 
							
								            for (int i = 0; i < n; i++) {
							 | 
						||
| 
								 | 
							
								                DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols);
							 | 
						||
| 
								 | 
							
								                closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        centers_length = centerCount;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        delete[] closestDistSq;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    flann_algorithm_t getType() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return FLANN_INDEX_KMEANS;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template<class CentersContainerType>
							 | 
						||
| 
								 | 
							
								    class KMeansDistanceComputer : public cv::ParallelLoopBody
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								    public:
							 | 
						||
| 
								 | 
							
								        KMeansDistanceComputer(Distance _distance, const Matrix<ElementType>& _dataset,
							 | 
						||
| 
								 | 
							
								            const int _branching, const int* _indices, const CentersContainerType& _dcenters,
							 | 
						||
| 
								 | 
							
								            const size_t _veclen, std::vector<int> &_new_centroids,
							 | 
						||
| 
								 | 
							
								            std::vector<DistanceType> &_sq_dists)
							 | 
						||
| 
								 | 
							
								            : distance(_distance)
							 | 
						||
| 
								 | 
							
								            , dataset(_dataset)
							 | 
						||
| 
								 | 
							
								            , branching(_branching)
							 | 
						||
| 
								 | 
							
								            , indices(_indices)
							 | 
						||
| 
								 | 
							
								            , dcenters(_dcenters)
							 | 
						||
| 
								 | 
							
								            , veclen(_veclen)
							 | 
						||
| 
								 | 
							
								            , new_centroids(_new_centroids)
							 | 
						||
| 
								 | 
							
								            , sq_dists(_sq_dists)
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        void operator()(const cv::Range& range) const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								            const int begin = range.start;
							 | 
						||
| 
								 | 
							
								            const int end = range.end;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            for( int i = begin; i<end; ++i)
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								                DistanceType sq_dist(distance(dataset[indices[i]], dcenters[0], veclen));
							 | 
						||
| 
								 | 
							
								                int new_centroid(0);
							 | 
						||
| 
								 | 
							
								                for (int j=1; j<branching; ++j) {
							 | 
						||
| 
								 | 
							
								                    DistanceType new_sq_dist = distance(dataset[indices[i]], dcenters[j], veclen);
							 | 
						||
| 
								 | 
							
								                    if (sq_dist>new_sq_dist) {
							 | 
						||
| 
								 | 
							
								                        new_centroid = j;
							 | 
						||
| 
								 | 
							
								                        sq_dist = new_sq_dist;
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								                sq_dists[i] = sq_dist;
							 | 
						||
| 
								 | 
							
								                new_centroids[i] = new_centroid;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    private:
							 | 
						||
| 
								 | 
							
								        Distance distance;
							 | 
						||
| 
								 | 
							
								        const Matrix<ElementType>& dataset;
							 | 
						||
| 
								 | 
							
								        const int branching;
							 | 
						||
| 
								 | 
							
								        const int* indices;
							 | 
						||
| 
								 | 
							
								        const CentersContainerType& dcenters;
							 | 
						||
| 
								 | 
							
								        const size_t veclen;
							 | 
						||
| 
								 | 
							
								        std::vector<int> &new_centroids;
							 | 
						||
| 
								 | 
							
								        std::vector<DistanceType> &sq_dists;
							 | 
						||
| 
								 | 
							
								        KMeansDistanceComputer& operator=( const KMeansDistanceComputer & ) { return *this; }
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Index constructor
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *          inputData = dataset with the input features
							 | 
						||
| 
								 | 
							
								     *          params = parameters passed to the hierarchical k-means algorithm
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(),
							 | 
						||
| 
								 | 
							
								                Distance d = Distance())
							 | 
						||
| 
								 | 
							
								        : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        memoryCounter_ = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        size_ = dataset_.rows;
							 | 
						||
| 
								 | 
							
								        veclen_ = dataset_.cols;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        branching_ = get_param(params,"branching",32);
							 | 
						||
| 
								 | 
							
								        trees_ = get_param(params,"trees",1);
							 | 
						||
| 
								 | 
							
								        iterations_ = get_param(params,"iterations",11);
							 | 
						||
| 
								 | 
							
								        if (iterations_<0) {
							 | 
						||
| 
								 | 
							
								            iterations_ = (std::numeric_limits<int>::max)();
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        centers_init_  = get_param(params,"centers_init",FLANN_CENTERS_RANDOM);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (centers_init_==FLANN_CENTERS_RANDOM) {
							 | 
						||
| 
								 | 
							
								            chooseCenters = &KMeansIndex::chooseCentersRandom;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else if (centers_init_==FLANN_CENTERS_GONZALES) {
							 | 
						||
| 
								 | 
							
								            chooseCenters = &KMeansIndex::chooseCentersGonzales;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
							 | 
						||
| 
								 | 
							
								            chooseCenters = &KMeansIndex::chooseCentersKMeanspp;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            FLANN_THROW(cv::Error::StsBadArg, "Unknown algorithm for choosing initial centers.");
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        cb_index_ = 0.4f;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        root_ = new KMeansNodePtr[trees_];
							 | 
						||
| 
								 | 
							
								        indices_ = new int*[trees_];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<trees_; ++i) {
							 | 
						||
| 
								 | 
							
								            root_[i] = NULL;
							 | 
						||
| 
								 | 
							
								            indices_[i] = NULL;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    KMeansIndex(const KMeansIndex&);
							 | 
						||
| 
								 | 
							
								    KMeansIndex& operator=(const KMeansIndex&);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Index destructor.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Release the memory used by the index.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    virtual ~KMeansIndex()
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        if (root_ != NULL) {
							 | 
						||
| 
								 | 
							
								            free_centers();
							 | 
						||
| 
								 | 
							
								            delete[] root_;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        if (indices_!=NULL) {
							 | 
						||
| 
								 | 
							
								            free_indices();
							 | 
						||
| 
								 | 
							
								            delete[] indices_;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     *  Returns size of index.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    size_t size() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return size_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Returns the length of an index feature.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    size_t veclen() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return veclen_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void set_cb_index( float index)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        cb_index_ = index;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Computes the inde memory usage
							 | 
						||
| 
								 | 
							
								     * Returns: memory used by the index
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    int usedMemory() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return pool_.usedMemory+pool_.wastedMemory+memoryCounter_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Builds the index
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void buildIndex() CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        if (branching_<2) {
							 | 
						||
| 
								 | 
							
								            FLANN_THROW(cv::Error::StsError, "Branching factor must be at least 2");
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        free_indices();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<trees_; ++i) {
							 | 
						||
| 
								 | 
							
								            indices_[i] = new int[size_];
							 | 
						||
| 
								 | 
							
								            for (size_t j=0; j<size_; ++j) {
							 | 
						||
| 
								 | 
							
								                indices_[i][j] = int(j);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            root_[i] = pool_.allocate<KMeansNode>();
							 | 
						||
| 
								 | 
							
								            std::memset(root_[i], 0, sizeof(KMeansNode));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            Distance* dummy = NULL;
							 | 
						||
| 
								 | 
							
								            computeNodeStatistics(root_[i], indices_[i], (unsigned int)size_, dummy);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            computeClustering(root_[i], indices_[i], (int)size_, branching_,0);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void saveIndex(FILE* stream) CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        save_value(stream, branching_);
							 | 
						||
| 
								 | 
							
								        save_value(stream, iterations_);
							 | 
						||
| 
								 | 
							
								        save_value(stream, memoryCounter_);
							 | 
						||
| 
								 | 
							
								        save_value(stream, cb_index_);
							 | 
						||
| 
								 | 
							
								        save_value(stream, trees_);
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<trees_; ++i) {
							 | 
						||
| 
								 | 
							
								            save_value(stream, *indices_[i], (int)size_);
							 | 
						||
| 
								 | 
							
								            save_tree(stream, root_[i], i);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void loadIndex(FILE* stream) CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        if (indices_!=NULL) {
							 | 
						||
| 
								 | 
							
								            free_indices();
							 | 
						||
| 
								 | 
							
								            delete[] indices_;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        if (root_!=NULL) {
							 | 
						||
| 
								 | 
							
								            free_centers();
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        load_value(stream, branching_);
							 | 
						||
| 
								 | 
							
								        load_value(stream, iterations_);
							 | 
						||
| 
								 | 
							
								        load_value(stream, memoryCounter_);
							 | 
						||
| 
								 | 
							
								        load_value(stream, cb_index_);
							 | 
						||
| 
								 | 
							
								        load_value(stream, trees_);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        indices_ = new int*[trees_];
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<trees_; ++i) {
							 | 
						||
| 
								 | 
							
								            indices_[i] = new int[size_];
							 | 
						||
| 
								 | 
							
								            load_value(stream, *indices_[i], size_);
							 | 
						||
| 
								 | 
							
								            load_tree(stream, root_[i], i);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        index_params_["algorithm"] = getType();
							 | 
						||
| 
								 | 
							
								        index_params_["branching"] = branching_;
							 | 
						||
| 
								 | 
							
								        index_params_["trees"] = trees_;
							 | 
						||
| 
								 | 
							
								        index_params_["iterations"] = iterations_;
							 | 
						||
| 
								 | 
							
								        index_params_["centers_init"] = centers_init_;
							 | 
						||
| 
								 | 
							
								        index_params_["cb_index"] = cb_index_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Find set of nearest neighbors to vec. Their indices are stored inside
							 | 
						||
| 
								 | 
							
								     * the result object.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     result = the result object in which the indices of the nearest-neighbors are stored
							 | 
						||
| 
								 | 
							
								     *     vec = the vector for which to search the nearest neighbors
							 | 
						||
| 
								 | 
							
								     *     searchParams = parameters that influence the search algorithm (checks, cb_index)
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        const int maxChecks = get_param(searchParams,"checks",32);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (maxChecks==FLANN_CHECKS_UNLIMITED) {
							 | 
						||
| 
								 | 
							
								            findExactNN(root_[0], result, vec);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            // Priority queue storing intermediate branches in the best-bin-first search
							 | 
						||
| 
								 | 
							
								            const cv::Ptr<Heap<BranchSt>>& heap = Heap<BranchSt>::getPooledInstance(cv::utils::getThreadID(), (int)size_);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            int checks = 0;
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<trees_; ++i) {
							 | 
						||
| 
								 | 
							
								                findNN(root_[i], result, vec, checks, maxChecks, heap);
							 | 
						||
| 
								 | 
							
								                if ((checks >= maxChecks) && result.full())
							 | 
						||
| 
								 | 
							
								                    break;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            BranchSt branch;
							 | 
						||
| 
								 | 
							
								            while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
							 | 
						||
| 
								 | 
							
								                KMeansNodePtr node = branch.node;
							 | 
						||
| 
								 | 
							
								                findNN(node, result, vec, checks, maxChecks, heap);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            CV_Assert(result.full());
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Clustering function that takes a cut in the hierarchical k-means
							 | 
						||
| 
								 | 
							
								     * tree and return the clusters centers of that clustering.
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     numClusters = number of clusters to have in the clustering computed
							 | 
						||
| 
								 | 
							
								     * Returns: number of cluster centers
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    int getClusterCenters(Matrix<CentersType>& centers)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        int numClusters = centers.rows;
							 | 
						||
| 
								 | 
							
								        if (numClusters<1) {
							 | 
						||
| 
								 | 
							
								            FLANN_THROW(cv::Error::StsBadArg, "Number of clusters must be at least 1");
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        DistanceType variance;
							 | 
						||
| 
								 | 
							
								        KMeansNodePtr* clusters = new KMeansNodePtr[numClusters];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        int clusterCount = getMinVarianceClusters(root_[0], clusters, numClusters, variance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<clusterCount; ++i) {
							 | 
						||
| 
								 | 
							
								            CentersType* center = clusters[i]->pivot;
							 | 
						||
| 
								 | 
							
								            for (size_t j=0; j<veclen_; ++j) {
							 | 
						||
| 
								 | 
							
								                centers[i][j] = center[j];
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        delete[] clusters;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        return clusterCount;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    IndexParams getParameters() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return index_params_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								private:
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Structure representing a node in the hierarchical k-means tree.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    struct KMeansNode
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * The cluster center.
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        CentersType* pivot;
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * The cluster radius.
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        DistanceType radius;
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * The cluster mean radius.
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        DistanceType mean_radius;
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * The cluster variance.
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        DistanceType variance;
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * The cluster size (number of points in the cluster)
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        int size;
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * Child nodes (only for non-terminal nodes)
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        KMeansNode** childs;
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * Node points (only for terminal nodes)
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        int* indices;
							 | 
						||
| 
								 | 
							
								        /**
							 | 
						||
| 
								 | 
							
								         * Level
							 | 
						||
| 
								 | 
							
								         */
							 | 
						||
| 
								 | 
							
								        int level;
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								    typedef KMeansNode* KMeansNodePtr;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Alias definition for a nicer syntax.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void save_tree(FILE* stream, KMeansNodePtr node, int num)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        save_value(stream, *node);
							 | 
						||
| 
								 | 
							
								        save_value(stream, *(node->pivot), (int)veclen_);
							 | 
						||
| 
								 | 
							
								        if (node->childs==NULL) {
							 | 
						||
| 
								 | 
							
								            int indices_offset = (int)(node->indices - indices_[num]);
							 | 
						||
| 
								 | 
							
								            save_value(stream, indices_offset);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            for(int i=0; i<branching_; ++i) {
							 | 
						||
| 
								 | 
							
								                save_tree(stream, node->childs[i], num);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void load_tree(FILE* stream, KMeansNodePtr& node, int num)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        node = pool_.allocate<KMeansNode>();
							 | 
						||
| 
								 | 
							
								        load_value(stream, *node);
							 | 
						||
| 
								 | 
							
								        node->pivot = new CentersType[veclen_];
							 | 
						||
| 
								 | 
							
								        load_value(stream, *(node->pivot), (int)veclen_);
							 | 
						||
| 
								 | 
							
								        if (node->childs==NULL) {
							 | 
						||
| 
								 | 
							
								            int indices_offset;
							 | 
						||
| 
								 | 
							
								            load_value(stream, indices_offset);
							 | 
						||
| 
								 | 
							
								            node->indices = indices_[num] + indices_offset;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            node->childs = pool_.allocate<KMeansNodePtr>(branching_);
							 | 
						||
| 
								 | 
							
								            for(int i=0; i<branching_; ++i) {
							 | 
						||
| 
								 | 
							
								                load_tree(stream, node->childs[i], num);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Helper function
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void free_centers(KMeansNodePtr node)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        delete[] node->pivot;
							 | 
						||
| 
								 | 
							
								        if (node->childs!=NULL) {
							 | 
						||
| 
								 | 
							
								            for (int k=0; k<branching_; ++k) {
							 | 
						||
| 
								 | 
							
								                free_centers(node->childs[k]);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void free_centers()
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								       if (root_ != NULL) {
							 | 
						||
| 
								 | 
							
								           for(int i=0; i<trees_; ++i) {
							 | 
						||
| 
								 | 
							
								               if (root_[i] != NULL) {
							 | 
						||
| 
								 | 
							
								                   free_centers(root_[i]);
							 | 
						||
| 
								 | 
							
								               }
							 | 
						||
| 
								 | 
							
								           }
							 | 
						||
| 
								 | 
							
								       }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Release the inner elements of indices[]
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void free_indices()
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        if (indices_!=NULL) {
							 | 
						||
| 
								 | 
							
								            for(int i=0; i<trees_; ++i) {
							 | 
						||
| 
								 | 
							
								                if (indices_[i]!=NULL) {
							 | 
						||
| 
								 | 
							
								                    delete[] indices_[i];
							 | 
						||
| 
								 | 
							
								                    indices_[i] = NULL;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Computes the statistics of a node (mean, radius, variance).
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     node = the node to use
							 | 
						||
| 
								 | 
							
								     *     indices = array of indices of the points belonging to the node
							 | 
						||
| 
								 | 
							
								     *     indices_length = number of indices in the array
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void computeNodeStatistics(KMeansNodePtr node, int* indices, unsigned int indices_length)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        DistanceType variance = 0;
							 | 
						||
| 
								 | 
							
								        CentersType* mean = new CentersType[veclen_];
							 | 
						||
| 
								 | 
							
								        memoryCounter_ += int(veclen_*sizeof(CentersType));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        memset(mean,0,veclen_*sizeof(CentersType));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for (unsigned int i=0; i<indices_length; ++i) {
							 | 
						||
| 
								 | 
							
								            ElementType* vec = dataset_[indices[i]];
							 | 
						||
| 
								 | 
							
								            for (size_t j=0; j<veclen_; ++j) {
							 | 
						||
| 
								 | 
							
								                mean[j] += vec[j];
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            variance += distance_(vec, ZeroIterator<ElementType>(), veclen_);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        float length = static_cast<float>(indices_length);
							 | 
						||
| 
								 | 
							
								        for (size_t j=0; j<veclen_; ++j) {
							 | 
						||
| 
								 | 
							
								            mean[j] = cvflann::round<CentersType>( mean[j] / static_cast<double>(indices_length) );
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        variance /= static_cast<DistanceType>( length );
							 | 
						||
| 
								 | 
							
								        variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        DistanceType radius = 0;
							 | 
						||
| 
								 | 
							
								        for (unsigned int i=0; i<indices_length; ++i) {
							 | 
						||
| 
								 | 
							
								            DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_);
							 | 
						||
| 
								 | 
							
								            if (tmp>radius) {
							 | 
						||
| 
								 | 
							
								                radius = tmp;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        node->variance = variance;
							 | 
						||
| 
								 | 
							
								        node->radius = radius;
							 | 
						||
| 
								 | 
							
								        node->pivot = mean;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void computeBitfieldNodeStatistics(KMeansNodePtr node, int* indices,
							 | 
						||
| 
								 | 
							
								                                       unsigned int indices_length)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        const unsigned int accumulator_veclen = static_cast<unsigned int>(
							 | 
						||
| 
								 | 
							
								                                                veclen_*sizeof(CentersType)*BITS_PER_CHAR);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        unsigned long long variance = 0ull;
							 | 
						||
| 
								 | 
							
								        CentersType* mean = new CentersType[veclen_];
							 | 
						||
| 
								 | 
							
								        memoryCounter_ += int(veclen_*sizeof(CentersType));
							 | 
						||
| 
								 | 
							
								        unsigned int* mean_accumulator = new unsigned int[accumulator_veclen];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        memset(mean_accumulator, 0, sizeof(unsigned int)*accumulator_veclen);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for (unsigned int i=0; i<indices_length; ++i) {
							 | 
						||
| 
								 | 
							
								            variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>(
							 | 
						||
| 
								 | 
							
								                        distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_)));
							 | 
						||
| 
								 | 
							
								            unsigned char* vec = (unsigned char*)dataset_[indices[i]];
							 | 
						||
| 
								 | 
							
								            for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
							 | 
						||
| 
								 | 
							
								                mean_accumulator[k]   += (vec[l])    & 0x01;
							 | 
						||
| 
								 | 
							
								                mean_accumulator[k+1] += (vec[l]>>1) & 0x01;
							 | 
						||
| 
								 | 
							
								                mean_accumulator[k+2] += (vec[l]>>2) & 0x01;
							 | 
						||
| 
								 | 
							
								                mean_accumulator[k+3] += (vec[l]>>3) & 0x01;
							 | 
						||
| 
								 | 
							
								                mean_accumulator[k+4] += (vec[l]>>4) & 0x01;
							 | 
						||
| 
								 | 
							
								                mean_accumulator[k+5] += (vec[l]>>5) & 0x01;
							 | 
						||
| 
								 | 
							
								                mean_accumulator[k+6] += (vec[l]>>6) & 0x01;
							 | 
						||
| 
								 | 
							
								                mean_accumulator[k+7] += (vec[l]>>7) & 0x01;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        double cnt = static_cast<double>(indices_length);
							 | 
						||
| 
								 | 
							
								        unsigned char* char_mean = (unsigned char*)mean;
							 | 
						||
| 
								 | 
							
								        for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
							 | 
						||
| 
								 | 
							
								            char_mean[l] = static_cast<unsigned char>(
							 | 
						||
| 
								 | 
							
								                              (((int)(0.5 + (double)(mean_accumulator[k])   / cnt)))
							 | 
						||
| 
								 | 
							
								                            | (((int)(0.5 + (double)(mean_accumulator[k+1]) / cnt))<<1)
							 | 
						||
| 
								 | 
							
								                            | (((int)(0.5 + (double)(mean_accumulator[k+2]) / cnt))<<2)
							 | 
						||
| 
								 | 
							
								                            | (((int)(0.5 + (double)(mean_accumulator[k+3]) / cnt))<<3)
							 | 
						||
| 
								 | 
							
								                            | (((int)(0.5 + (double)(mean_accumulator[k+4]) / cnt))<<4)
							 | 
						||
| 
								 | 
							
								                            | (((int)(0.5 + (double)(mean_accumulator[k+5]) / cnt))<<5)
							 | 
						||
| 
								 | 
							
								                            | (((int)(0.5 + (double)(mean_accumulator[k+6]) / cnt))<<6)
							 | 
						||
| 
								 | 
							
								                            | (((int)(0.5 + (double)(mean_accumulator[k+7]) / cnt))<<7));
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        variance = static_cast<unsigned long long>(
							 | 
						||
| 
								 | 
							
								                    0.5 + static_cast<double>(variance) / static_cast<double>(indices_length));
							 | 
						||
| 
								 | 
							
								        variance -= static_cast<unsigned long long>(
							 | 
						||
| 
								 | 
							
								                    ensureSquareDistance<Distance>(
							 | 
						||
| 
								 | 
							
								                        distance_(mean, ZeroIterator<ElementType>(), veclen_)));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        DistanceType radius = 0;
							 | 
						||
| 
								 | 
							
								        for (unsigned int i=0; i<indices_length; ++i) {
							 | 
						||
| 
								 | 
							
								            DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_);
							 | 
						||
| 
								 | 
							
								            if (tmp>radius) {
							 | 
						||
| 
								 | 
							
								                radius = tmp;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        node->variance = static_cast<DistanceType>(variance);
							 | 
						||
| 
								 | 
							
								        node->radius = radius;
							 | 
						||
| 
								 | 
							
								        node->pivot = mean;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        delete[] mean_accumulator;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void computeDnaNodeStatistics(KMeansNodePtr node, int* indices,
							 | 
						||
| 
								 | 
							
								                                       unsigned int indices_length)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        const unsigned int histos_veclen = static_cast<unsigned int>(
							 | 
						||
| 
								 | 
							
								                    veclen_*sizeof(CentersType)*(HISTOS_PER_BASE*BASE_PER_CHAR));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        unsigned long long variance = 0ull;
							 | 
						||
| 
								 | 
							
								        unsigned int* histograms = new unsigned int[histos_veclen];
							 | 
						||
| 
								 | 
							
								        memset(histograms, 0, sizeof(unsigned int)*histos_veclen);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for (unsigned int i=0; i<indices_length; ++i) {
							 | 
						||
| 
								 | 
							
								            variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>(
							 | 
						||
| 
								 | 
							
								                        distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_)));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            unsigned char* vec = (unsigned char*)dataset_[indices[i]];
							 | 
						||
| 
								 | 
							
								            for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
							 | 
						||
| 
								 | 
							
								                histograms[k +     ((vec[l])    & 0x03)]++;
							 | 
						||
| 
								 | 
							
								                histograms[k + 4 + ((vec[l]>>2) & 0x03)]++;
							 | 
						||
| 
								 | 
							
								                histograms[k + 8 + ((vec[l]>>4) & 0x03)]++;
							 | 
						||
| 
								 | 
							
								                histograms[k +12 + ((vec[l]>>6) & 0x03)]++;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        CentersType* mean = new CentersType[veclen_];
							 | 
						||
| 
								 | 
							
								        memoryCounter_ += int(veclen_*sizeof(CentersType));
							 | 
						||
| 
								 | 
							
								        unsigned char* char_mean = (unsigned char*)mean;
							 | 
						||
| 
								 | 
							
								        unsigned int* h = histograms;
							 | 
						||
| 
								 | 
							
								        for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
							 | 
						||
| 
								 | 
							
								            char_mean[l] = (h[k] > h[k+1] ? h[k+2] > h[k+3] ? h[k]   > h[k+2] ? 0x00 : 0x10
							 | 
						||
| 
								 | 
							
								                                                            : h[k]   > h[k+3] ? 0x00 : 0x11
							 | 
						||
| 
								 | 
							
								                                          : h[k+2] > h[k+3] ? h[k+1] > h[k+2] ? 0x01 : 0x10
							 | 
						||
| 
								 | 
							
								                                                            : h[k+1] > h[k+3] ? 0x01 : 0x11)
							 | 
						||
| 
								 | 
							
								                         | (h[k+4]>h[k+5] ? h[k+6] > h[k+7] ? h[k+4] > h[k+6] ? 0x00   : 0x1000
							 | 
						||
| 
								 | 
							
								                                                            : h[k+4] > h[k+7] ? 0x00   : 0x1100
							 | 
						||
| 
								 | 
							
								                                          : h[k+6] > h[k+7] ? h[k+5] > h[k+6] ? 0x0100 : 0x1000
							 | 
						||
| 
								 | 
							
								                                                            : h[k+5] > h[k+7] ? 0x0100 : 0x1100)
							 | 
						||
| 
								 | 
							
								                         | (h[k+8]>h[k+9] ? h[k+10]>h[k+11] ? h[k+8] >h[k+10] ? 0x00   : 0x100000
							 | 
						||
| 
								 | 
							
								                                                            : h[k+8] >h[k+11] ? 0x00   : 0x110000
							 | 
						||
| 
								 | 
							
								                                          : h[k+10]>h[k+11] ? h[k+9] >h[k+10] ? 0x010000 : 0x100000
							 | 
						||
| 
								 | 
							
								                                                            : h[k+9] >h[k+11] ? 0x010000 : 0x110000)
							 | 
						||
| 
								 | 
							
								                         | (h[k+12]>h[k+13] ? h[k+14]>h[k+15] ? h[k+12] >h[k+14] ? 0x00   : 0x10000000
							 | 
						||
| 
								 | 
							
								                                                              : h[k+12] >h[k+15] ? 0x00   : 0x11000000
							 | 
						||
| 
								 | 
							
								                                            : h[k+14]>h[k+15] ? h[k+13] >h[k+14] ? 0x01000000 : 0x10000000
							 | 
						||
| 
								 | 
							
								                                                              : h[k+13] >h[k+15] ? 0x01000000 : 0x11000000);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        variance = static_cast<unsigned long long>(
							 | 
						||
| 
								 | 
							
								                    0.5 + static_cast<double>(variance) / static_cast<double>(indices_length));
							 | 
						||
| 
								 | 
							
								        variance -= static_cast<unsigned long long>(
							 | 
						||
| 
								 | 
							
								                    ensureSquareDistance<Distance>(
							 | 
						||
| 
								 | 
							
								                        distance_(mean, ZeroIterator<ElementType>(), veclen_)));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        DistanceType radius = 0;
							 | 
						||
| 
								 | 
							
								        for (unsigned int i=0; i<indices_length; ++i) {
							 | 
						||
| 
								 | 
							
								            DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_);
							 | 
						||
| 
								 | 
							
								            if (tmp>radius) {
							 | 
						||
| 
								 | 
							
								                radius = tmp;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        node->variance = static_cast<DistanceType>(variance);
							 | 
						||
| 
								 | 
							
								        node->radius = radius;
							 | 
						||
| 
								 | 
							
								        node->pivot = mean;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        delete[] histograms;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template<typename DistType>
							 | 
						||
| 
								 | 
							
								    void computeNodeStatistics(KMeansNodePtr node, int* indices,
							 | 
						||
| 
								 | 
							
								                               unsigned int indices_length,
							 | 
						||
| 
								 | 
							
								                               const DistType* identifier)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        (void)identifier;
							 | 
						||
| 
								 | 
							
								        computeNodeStatistics(node, indices, indices_length);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void computeNodeStatistics(KMeansNodePtr node, int* indices,
							 | 
						||
| 
								 | 
							
								                               unsigned int indices_length,
							 | 
						||
| 
								 | 
							
								                               const cvflann::HammingLUT* identifier)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        (void)identifier;
							 | 
						||
| 
								 | 
							
								        computeBitfieldNodeStatistics(node, indices, indices_length);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void computeNodeStatistics(KMeansNodePtr node, int* indices,
							 | 
						||
| 
								 | 
							
								                               unsigned int indices_length,
							 | 
						||
| 
								 | 
							
								                               const cvflann::Hamming<unsigned char>* identifier)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        (void)identifier;
							 | 
						||
| 
								 | 
							
								        computeBitfieldNodeStatistics(node, indices, indices_length);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void computeNodeStatistics(KMeansNodePtr node, int* indices,
							 | 
						||
| 
								 | 
							
								                               unsigned int indices_length,
							 | 
						||
| 
								 | 
							
								                               const cvflann::Hamming2<unsigned char>* identifier)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        (void)identifier;
							 | 
						||
| 
								 | 
							
								        computeBitfieldNodeStatistics(node, indices, indices_length);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void computeNodeStatistics(KMeansNodePtr node, int* indices,
							 | 
						||
| 
								 | 
							
								                               unsigned int indices_length,
							 | 
						||
| 
								 | 
							
								                               const cvflann::DNAmmingLUT* identifier)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        (void)identifier;
							 | 
						||
| 
								 | 
							
								        computeDnaNodeStatistics(node, indices, indices_length);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void computeNodeStatistics(KMeansNodePtr node, int* indices,
							 | 
						||
| 
								 | 
							
								                               unsigned int indices_length,
							 | 
						||
| 
								 | 
							
								                               const cvflann::DNAmming2<unsigned char>* identifier)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        (void)identifier;
							 | 
						||
| 
								 | 
							
								        computeDnaNodeStatistics(node, indices, indices_length);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void refineClustering(int* indices, int indices_length, int branching, CentersType** centers,
							 | 
						||
| 
								 | 
							
								                          std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        cv::AutoBuffer<double> dcenters_buf(branching*veclen_);
							 | 
						||
| 
								 | 
							
								        Matrix<double> dcenters(dcenters_buf.data(), branching, veclen_);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        bool converged = false;
							 | 
						||
| 
								 | 
							
								        int iteration = 0;
							 | 
						||
| 
								 | 
							
								        while (!converged && iteration<iterations_) {
							 | 
						||
| 
								 | 
							
								            converged = true;
							 | 
						||
| 
								 | 
							
								            iteration++;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            // compute the new cluster centers
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<branching; ++i) {
							 | 
						||
| 
								 | 
							
								                memset(dcenters[i],0,sizeof(double)*veclen_);
							 | 
						||
| 
								 | 
							
								                radiuses[i] = 0;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<indices_length; ++i) {
							 | 
						||
| 
								 | 
							
								                ElementType* vec = dataset_[indices[i]];
							 | 
						||
| 
								 | 
							
								                double* center = dcenters[belongs_to[i]];
							 | 
						||
| 
								 | 
							
								                for (size_t k=0; k<veclen_; ++k) {
							 | 
						||
| 
								 | 
							
								                    center[k] += vec[k];
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<branching; ++i) {
							 | 
						||
| 
								 | 
							
								                int cnt = count[i];
							 | 
						||
| 
								 | 
							
								                for (size_t k=0; k<veclen_; ++k) {
							 | 
						||
| 
								 | 
							
								                    dcenters[i][k] /= cnt;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            std::vector<int> new_centroids(indices_length);
							 | 
						||
| 
								 | 
							
								            std::vector<DistanceType> sq_dists(indices_length);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            // reassign points to clusters
							 | 
						||
| 
								 | 
							
								            KMeansDistanceComputer<Matrix<double> > invoker(
							 | 
						||
| 
								 | 
							
								                        distance_, dataset_, branching, indices, dcenters, veclen_, new_centroids, sq_dists);
							 | 
						||
| 
								 | 
							
								            parallel_for_(cv::Range(0, (int)indices_length), invoker);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            for (int i=0; i < (int)indices_length; ++i) {
							 | 
						||
| 
								 | 
							
								                DistanceType sq_dist(sq_dists[i]);
							 | 
						||
| 
								 | 
							
								                int new_centroid(new_centroids[i]);
							 | 
						||
| 
								 | 
							
								                if (sq_dist > radiuses[new_centroid]) {
							 | 
						||
| 
								 | 
							
								                    radiuses[new_centroid] = sq_dist;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								                if (new_centroid != belongs_to[i]) {
							 | 
						||
| 
								 | 
							
								                    count[belongs_to[i]]--;
							 | 
						||
| 
								 | 
							
								                    count[new_centroid]++;
							 | 
						||
| 
								 | 
							
								                    belongs_to[i] = new_centroid;
							 | 
						||
| 
								 | 
							
								                    converged = false;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<branching; ++i) {
							 | 
						||
| 
								 | 
							
								                // if one cluster converges to an empty cluster,
							 | 
						||
| 
								 | 
							
								                // move an element into that cluster
							 | 
						||
| 
								 | 
							
								                if (count[i]==0) {
							 | 
						||
| 
								 | 
							
								                    int j = (i+1)%branching;
							 | 
						||
| 
								 | 
							
								                    while (count[j]<=1) {
							 | 
						||
| 
								 | 
							
								                        j = (j+1)%branching;
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                    for (int k=0; k<indices_length; ++k) {
							 | 
						||
| 
								 | 
							
								                        if (belongs_to[k]==j) {
							 | 
						||
| 
								 | 
							
								                            // for cluster j, we move the furthest element from the center to the empty cluster i
							 | 
						||
| 
								 | 
							
								                            if ( distance_(dataset_[indices[k]], dcenters[j], veclen_) == radiuses[j] ) {
							 | 
						||
| 
								 | 
							
								                                belongs_to[k] = i;
							 | 
						||
| 
								 | 
							
								                                count[j]--;
							 | 
						||
| 
								 | 
							
								                                count[i]++;
							 | 
						||
| 
								 | 
							
								                                break;
							 | 
						||
| 
								 | 
							
								                            }
							 | 
						||
| 
								 | 
							
								                        }
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								                    converged = false;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								       for (int i=0; i<branching; ++i) {
							 | 
						||
| 
								 | 
							
								           centers[i] = new CentersType[veclen_];
							 | 
						||
| 
								 | 
							
								           memoryCounter_ += (int)(veclen_*sizeof(CentersType));
							 | 
						||
| 
								 | 
							
								           for (size_t k=0; k<veclen_; ++k) {
							 | 
						||
| 
								 | 
							
								               centers[i][k] = (CentersType)dcenters[i][k];
							 | 
						||
| 
								 | 
							
								           }
							 | 
						||
| 
								 | 
							
								       }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void refineBitfieldClustering(int* indices, int indices_length, int branching, CentersType** centers,
							 | 
						||
| 
								 | 
							
								                                  std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<branching; ++i) {
							 | 
						||
| 
								 | 
							
								            centers[i] = new CentersType[veclen_];
							 | 
						||
| 
								 | 
							
								            memoryCounter_ += (int)(veclen_*sizeof(CentersType));
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        const unsigned int accumulator_veclen = static_cast<unsigned int>(
							 | 
						||
| 
								 | 
							
								                                                veclen_*sizeof(ElementType)*BITS_PER_CHAR);
							 | 
						||
| 
								 | 
							
								        cv::AutoBuffer<unsigned int> dcenters_buf(branching*accumulator_veclen);
							 | 
						||
| 
								 | 
							
								        Matrix<unsigned int> dcenters(dcenters_buf.data(), branching, accumulator_veclen);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        bool converged = false;
							 | 
						||
| 
								 | 
							
								        int iteration = 0;
							 | 
						||
| 
								 | 
							
								        while (!converged && iteration<iterations_) {
							 | 
						||
| 
								 | 
							
								            converged = true;
							 | 
						||
| 
								 | 
							
								            iteration++;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            // compute the new cluster centers
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<branching; ++i) {
							 | 
						||
| 
								 | 
							
								                memset(dcenters[i],0,sizeof(unsigned int)*accumulator_veclen);
							 | 
						||
| 
								 | 
							
								                radiuses[i] = 0;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<indices_length; ++i) {
							 | 
						||
| 
								 | 
							
								                unsigned char* vec = (unsigned char*)dataset_[indices[i]];
							 | 
						||
| 
								 | 
							
								                unsigned int* dcenter = dcenters[belongs_to[i]];
							 | 
						||
| 
								 | 
							
								                for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
							 | 
						||
| 
								 | 
							
								                    dcenter[k]   += (vec[l])    & 0x01;
							 | 
						||
| 
								 | 
							
								                    dcenter[k+1] += (vec[l]>>1) & 0x01;
							 | 
						||
| 
								 | 
							
								                    dcenter[k+2] += (vec[l]>>2) & 0x01;
							 | 
						||
| 
								 | 
							
								                    dcenter[k+3] += (vec[l]>>3) & 0x01;
							 | 
						||
| 
								 | 
							
								                    dcenter[k+4] += (vec[l]>>4) & 0x01;
							 | 
						||
| 
								 | 
							
								                    dcenter[k+5] += (vec[l]>>5) & 0x01;
							 | 
						||
| 
								 | 
							
								                    dcenter[k+6] += (vec[l]>>6) & 0x01;
							 | 
						||
| 
								 | 
							
								                    dcenter[k+7] += (vec[l]>>7) & 0x01;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<branching; ++i) {
							 | 
						||
| 
								 | 
							
								                double cnt = static_cast<double>(count[i]);
							 | 
						||
| 
								 | 
							
								                unsigned int* dcenter = dcenters[i];
							 | 
						||
| 
								 | 
							
								                unsigned char* charCenter = (unsigned char*)centers[i];
							 | 
						||
| 
								 | 
							
								                for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
							 | 
						||
| 
								 | 
							
								                    charCenter[l] = static_cast<unsigned char>(
							 | 
						||
| 
								 | 
							
								                                      (((int)(0.5 + (double)(dcenter[k])   / cnt)))
							 | 
						||
| 
								 | 
							
								                                    | (((int)(0.5 + (double)(dcenter[k+1]) / cnt))<<1)
							 | 
						||
| 
								 | 
							
								                                    | (((int)(0.5 + (double)(dcenter[k+2]) / cnt))<<2)
							 | 
						||
| 
								 | 
							
								                                    | (((int)(0.5 + (double)(dcenter[k+3]) / cnt))<<3)
							 | 
						||
| 
								 | 
							
								                                    | (((int)(0.5 + (double)(dcenter[k+4]) / cnt))<<4)
							 | 
						||
| 
								 | 
							
								                                    | (((int)(0.5 + (double)(dcenter[k+5]) / cnt))<<5)
							 | 
						||
| 
								 | 
							
								                                    | (((int)(0.5 + (double)(dcenter[k+6]) / cnt))<<6)
							 | 
						||
| 
								 | 
							
								                                    | (((int)(0.5 + (double)(dcenter[k+7]) / cnt))<<7));
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            std::vector<int> new_centroids(indices_length);
							 | 
						||
| 
								 | 
							
								            std::vector<DistanceType> dists(indices_length);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            // reassign points to clusters
							 | 
						||
| 
								 | 
							
								            KMeansDistanceComputer<ElementType**> invoker(
							 | 
						||
| 
								 | 
							
								                        distance_, dataset_, branching, indices, centers, veclen_, new_centroids, dists);
							 | 
						||
| 
								 | 
							
								            parallel_for_(cv::Range(0, (int)indices_length), invoker);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            for (int i=0; i < indices_length; ++i) {
							 | 
						||
| 
								 | 
							
								                DistanceType dist(dists[i]);
							 | 
						||
| 
								 | 
							
								                int new_centroid(new_centroids[i]);
							 | 
						||
| 
								 | 
							
								                if (dist > radiuses[new_centroid]) {
							 | 
						||
| 
								 | 
							
								                    radiuses[new_centroid] = dist;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								                if (new_centroid != belongs_to[i]) {
							 | 
						||
| 
								 | 
							
								                    count[belongs_to[i]]--;
							 | 
						||
| 
								 | 
							
								                    count[new_centroid]++;
							 | 
						||
| 
								 | 
							
								                    belongs_to[i] = new_centroid;
							 | 
						||
| 
								 | 
							
								                    converged = false;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<branching; ++i) {
							 | 
						||
| 
								 | 
							
								                // if one cluster converges to an empty cluster,
							 | 
						||
| 
								 | 
							
								                // move an element into that cluster
							 | 
						||
| 
								 | 
							
								                if (count[i]==0) {
							 | 
						||
| 
								 | 
							
								                    int j = (i+1)%branching;
							 | 
						||
| 
								 | 
							
								                    while (count[j]<=1) {
							 | 
						||
| 
								 | 
							
								                        j = (j+1)%branching;
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                    for (int k=0; k<indices_length; ++k) {
							 | 
						||
| 
								 | 
							
								                        if (belongs_to[k]==j) {
							 | 
						||
| 
								 | 
							
								                            // for cluster j, we move the furthest element from the center to the empty cluster i
							 | 
						||
| 
								 | 
							
								                            if ( distance_(dataset_[indices[k]], centers[j], veclen_) == radiuses[j] ) {
							 | 
						||
| 
								 | 
							
								                                belongs_to[k] = i;
							 | 
						||
| 
								 | 
							
								                                count[j]--;
							 | 
						||
| 
								 | 
							
								                                count[i]++;
							 | 
						||
| 
								 | 
							
								                                break;
							 | 
						||
| 
								 | 
							
								                            }
							 | 
						||
| 
								 | 
							
								                        }
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								                    converged = false;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void refineDnaClustering(int* indices, int indices_length, int branching, CentersType** centers,
							 | 
						||
| 
								 | 
							
								                                  std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<branching; ++i) {
							 | 
						||
| 
								 | 
							
								            centers[i] = new CentersType[veclen_];
							 | 
						||
| 
								 | 
							
								            memoryCounter_ += (int)(veclen_*sizeof(CentersType));
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        const unsigned int histos_veclen = static_cast<unsigned int>(
							 | 
						||
| 
								 | 
							
								                    veclen_*sizeof(CentersType)*(HISTOS_PER_BASE*BASE_PER_CHAR));
							 | 
						||
| 
								 | 
							
								        cv::AutoBuffer<unsigned int> histos_buf(branching*histos_veclen);
							 | 
						||
| 
								 | 
							
								        Matrix<unsigned int> histos(histos_buf.data(), branching, histos_veclen);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        bool converged = false;
							 | 
						||
| 
								 | 
							
								        int iteration = 0;
							 | 
						||
| 
								 | 
							
								        while (!converged && iteration<iterations_) {
							 | 
						||
| 
								 | 
							
								            converged = true;
							 | 
						||
| 
								 | 
							
								            iteration++;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            // compute the new cluster centers
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<branching; ++i) {
							 | 
						||
| 
								 | 
							
								                memset(histos[i],0,sizeof(unsigned int)*histos_veclen);
							 | 
						||
| 
								 | 
							
								                radiuses[i] = 0;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<indices_length; ++i) {
							 | 
						||
| 
								 | 
							
								                unsigned char* vec = (unsigned char*)dataset_[indices[i]];
							 | 
						||
| 
								 | 
							
								                unsigned int* h = histos[belongs_to[i]];
							 | 
						||
| 
								 | 
							
								                for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
							 | 
						||
| 
								 | 
							
								                    h[k +     ((vec[l])    & 0x03)]++;
							 | 
						||
| 
								 | 
							
								                    h[k + 4 + ((vec[l]>>2) & 0x03)]++;
							 | 
						||
| 
								 | 
							
								                    h[k + 8 + ((vec[l]>>4) & 0x03)]++;
							 | 
						||
| 
								 | 
							
								                    h[k +12 + ((vec[l]>>6) & 0x03)]++;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<branching; ++i) {
							 | 
						||
| 
								 | 
							
								                unsigned int* h = histos[i];
							 | 
						||
| 
								 | 
							
								                unsigned char* charCenter = (unsigned char*)centers[i];
							 | 
						||
| 
								 | 
							
								                for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
							 | 
						||
| 
								 | 
							
								                    charCenter[l]= (h[k] > h[k+1] ? h[k+2] > h[k+3] ? h[k]   > h[k+2] ? 0x00 : 0x10
							 | 
						||
| 
								 | 
							
								                                                                    : h[k]   > h[k+3] ? 0x00 : 0x11
							 | 
						||
| 
								 | 
							
								                                                  : h[k+2] > h[k+3] ? h[k+1] > h[k+2] ? 0x01 : 0x10
							 | 
						||
| 
								 | 
							
								                                                                    : h[k+1] > h[k+3] ? 0x01 : 0x11)
							 | 
						||
| 
								 | 
							
								                                 | (h[k+4]>h[k+5] ? h[k+6] > h[k+7] ? h[k+4] > h[k+6] ? 0x00   : 0x1000
							 | 
						||
| 
								 | 
							
								                                                                    : h[k+4] > h[k+7] ? 0x00   : 0x1100
							 | 
						||
| 
								 | 
							
								                                                  : h[k+6] > h[k+7] ? h[k+5] > h[k+6] ? 0x0100 : 0x1000
							 | 
						||
| 
								 | 
							
								                                                                    : h[k+5] > h[k+7] ? 0x0100 : 0x1100)
							 | 
						||
| 
								 | 
							
								                                 | (h[k+8]>h[k+9] ? h[k+10]>h[k+11] ? h[k+8] >h[k+10] ? 0x00   : 0x100000
							 | 
						||
| 
								 | 
							
								                                                                    : h[k+8] >h[k+11] ? 0x00   : 0x110000
							 | 
						||
| 
								 | 
							
								                                                  : h[k+10]>h[k+11] ? h[k+9] >h[k+10] ? 0x010000 : 0x100000
							 | 
						||
| 
								 | 
							
								                                                                    : h[k+9] >h[k+11] ? 0x010000 : 0x110000)
							 | 
						||
| 
								 | 
							
								                                 | (h[k+12]>h[k+13] ? h[k+14]>h[k+15] ? h[k+12] >h[k+14] ? 0x00   : 0x10000000
							 | 
						||
| 
								 | 
							
								                                                                      : h[k+12] >h[k+15] ? 0x00   : 0x11000000
							 | 
						||
| 
								 | 
							
								                                                    : h[k+14]>h[k+15] ? h[k+13] >h[k+14] ? 0x01000000 : 0x10000000
							 | 
						||
| 
								 | 
							
								                                                                      : h[k+13] >h[k+15] ? 0x01000000 : 0x11000000);
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            std::vector<int> new_centroids(indices_length);
							 | 
						||
| 
								 | 
							
								            std::vector<DistanceType> dists(indices_length);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            // reassign points to clusters
							 | 
						||
| 
								 | 
							
								            KMeansDistanceComputer<ElementType**> invoker(
							 | 
						||
| 
								 | 
							
								                        distance_, dataset_, branching, indices, centers, veclen_, new_centroids, dists);
							 | 
						||
| 
								 | 
							
								            parallel_for_(cv::Range(0, (int)indices_length), invoker);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            for (int i=0; i < indices_length; ++i) {
							 | 
						||
| 
								 | 
							
								                DistanceType dist(dists[i]);
							 | 
						||
| 
								 | 
							
								                int new_centroid(new_centroids[i]);
							 | 
						||
| 
								 | 
							
								                if (dist > radiuses[new_centroid]) {
							 | 
						||
| 
								 | 
							
								                    radiuses[new_centroid] = dist;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								                if (new_centroid != belongs_to[i]) {
							 | 
						||
| 
								 | 
							
								                    count[belongs_to[i]]--;
							 | 
						||
| 
								 | 
							
								                    count[new_centroid]++;
							 | 
						||
| 
								 | 
							
								                    belongs_to[i] = new_centroid;
							 | 
						||
| 
								 | 
							
								                    converged = false;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<branching; ++i) {
							 | 
						||
| 
								 | 
							
								                // if one cluster converges to an empty cluster,
							 | 
						||
| 
								 | 
							
								                // move an element into that cluster
							 | 
						||
| 
								 | 
							
								                if (count[i]==0) {
							 | 
						||
| 
								 | 
							
								                    int j = (i+1)%branching;
							 | 
						||
| 
								 | 
							
								                    while (count[j]<=1) {
							 | 
						||
| 
								 | 
							
								                        j = (j+1)%branching;
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                    for (int k=0; k<indices_length; ++k) {
							 | 
						||
| 
								 | 
							
								                        if (belongs_to[k]==j) {
							 | 
						||
| 
								 | 
							
								                            // for cluster j, we move the furthest element from the center to the empty cluster i
							 | 
						||
| 
								 | 
							
								                            if ( distance_(dataset_[indices[k]], centers[j], veclen_) == radiuses[j] ) {
							 | 
						||
| 
								 | 
							
								                                belongs_to[k] = i;
							 | 
						||
| 
								 | 
							
								                                count[j]--;
							 | 
						||
| 
								 | 
							
								                                count[i]++;
							 | 
						||
| 
								 | 
							
								                                break;
							 | 
						||
| 
								 | 
							
								                            }
							 | 
						||
| 
								 | 
							
								                        }
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								                    converged = false;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void computeSubClustering(KMeansNodePtr node, int* indices, int indices_length,
							 | 
						||
| 
								 | 
							
								                              int branching, int level, CentersType** centers,
							 | 
						||
| 
								 | 
							
								                              std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        // compute kmeans clustering for each of the resulting clusters
							 | 
						||
| 
								 | 
							
								        node->childs = pool_.allocate<KMeansNodePtr>(branching);
							 | 
						||
| 
								 | 
							
								        int start = 0;
							 | 
						||
| 
								 | 
							
								        int end = start;
							 | 
						||
| 
								 | 
							
								        for (int c=0; c<branching; ++c) {
							 | 
						||
| 
								 | 
							
								            int s = count[c];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            DistanceType variance = 0;
							 | 
						||
| 
								 | 
							
								            DistanceType mean_radius =0;
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<indices_length; ++i) {
							 | 
						||
| 
								 | 
							
								                if (belongs_to[i]==c) {
							 | 
						||
| 
								 | 
							
								                    DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);
							 | 
						||
| 
								 | 
							
								                    variance += d;
							 | 
						||
| 
								 | 
							
								                    mean_radius += static_cast<DistanceType>( sqrt(d) );
							 | 
						||
| 
								 | 
							
								                    std::swap(indices[i],indices[end]);
							 | 
						||
| 
								 | 
							
								                    std::swap(belongs_to[i],belongs_to[end]);
							 | 
						||
| 
								 | 
							
								                    end++;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            variance /= s;
							 | 
						||
| 
								 | 
							
								            mean_radius /= s;
							 | 
						||
| 
								 | 
							
								            variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            node->childs[c] = pool_.allocate<KMeansNode>();
							 | 
						||
| 
								 | 
							
								            std::memset(node->childs[c], 0, sizeof(KMeansNode));
							 | 
						||
| 
								 | 
							
								            node->childs[c]->radius = radiuses[c];
							 | 
						||
| 
								 | 
							
								            node->childs[c]->pivot = centers[c];
							 | 
						||
| 
								 | 
							
								            node->childs[c]->variance = variance;
							 | 
						||
| 
								 | 
							
								            node->childs[c]->mean_radius = mean_radius;
							 | 
						||
| 
								 | 
							
								            computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
							 | 
						||
| 
								 | 
							
								            start=end;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void computeAnyBitfieldSubClustering(KMeansNodePtr node, int* indices, int indices_length,
							 | 
						||
| 
								 | 
							
								                              int branching, int level, CentersType** centers,
							 | 
						||
| 
								 | 
							
								                              std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        // compute kmeans clustering for each of the resulting clusters
							 | 
						||
| 
								 | 
							
								        node->childs = pool_.allocate<KMeansNodePtr>(branching);
							 | 
						||
| 
								 | 
							
								        int start = 0;
							 | 
						||
| 
								 | 
							
								        int end = start;
							 | 
						||
| 
								 | 
							
								        for (int c=0; c<branching; ++c) {
							 | 
						||
| 
								 | 
							
								            int s = count[c];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            unsigned long long variance = 0ull;
							 | 
						||
| 
								 | 
							
								            DistanceType mean_radius =0;
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<indices_length; ++i) {
							 | 
						||
| 
								 | 
							
								                if (belongs_to[i]==c) {
							 | 
						||
| 
								 | 
							
								                    DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);
							 | 
						||
| 
								 | 
							
								                    variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>(d) );
							 | 
						||
| 
								 | 
							
								                    mean_radius += ensureSimpleDistance<Distance>(d);
							 | 
						||
| 
								 | 
							
								                    std::swap(indices[i],indices[end]);
							 | 
						||
| 
								 | 
							
								                    std::swap(belongs_to[i],belongs_to[end]);
							 | 
						||
| 
								 | 
							
								                    end++;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            mean_radius = static_cast<DistanceType>(
							 | 
						||
| 
								 | 
							
								                        0.5f + static_cast<float>(mean_radius) / static_cast<float>(s));
							 | 
						||
| 
								 | 
							
								            variance = static_cast<unsigned long long>(
							 | 
						||
| 
								 | 
							
								                        0.5 + static_cast<double>(variance) / static_cast<double>(s));
							 | 
						||
| 
								 | 
							
								            variance -= static_cast<unsigned long long>(
							 | 
						||
| 
								 | 
							
								                        ensureSquareDistance<Distance>(
							 | 
						||
| 
								 | 
							
								                            distance_(centers[c], ZeroIterator<ElementType>(), veclen_)));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            node->childs[c] = pool_.allocate<KMeansNode>();
							 | 
						||
| 
								 | 
							
								            std::memset(node->childs[c], 0, sizeof(KMeansNode));
							 | 
						||
| 
								 | 
							
								            node->childs[c]->radius = radiuses[c];
							 | 
						||
| 
								 | 
							
								            node->childs[c]->pivot = centers[c];
							 | 
						||
| 
								 | 
							
								            node->childs[c]->variance = static_cast<DistanceType>(variance);
							 | 
						||
| 
								 | 
							
								            node->childs[c]->mean_radius = mean_radius;
							 | 
						||
| 
								 | 
							
								            computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
							 | 
						||
| 
								 | 
							
								            start=end;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template<typename DistType>
							 | 
						||
| 
								 | 
							
								    void refineAndSplitClustering(
							 | 
						||
| 
								 | 
							
								            KMeansNodePtr node, int* indices, int indices_length, int branching,
							 | 
						||
| 
								 | 
							
								            int level, CentersType** centers, std::vector<DistanceType>& radiuses,
							 | 
						||
| 
								 | 
							
								            int* belongs_to, int* count, const DistType* identifier)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        (void)identifier;
							 | 
						||
| 
								 | 
							
								        refineClustering(indices, indices_length, branching, centers, radiuses, belongs_to, count);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        computeSubClustering(node, indices, indices_length, branching,
							 | 
						||
| 
								 | 
							
								                             level, centers, radiuses, belongs_to, count);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * The methods responsible with doing the recursive hierarchical clustering on
							 | 
						||
| 
								 | 
							
								     * binary vectors.
							 | 
						||
| 
								 | 
							
								     * As some might have heard that KMeans on binary data doesn't make sense,
							 | 
						||
| 
								 | 
							
								     * it's worth a little explanation why it actually fairly works. As
							 | 
						||
| 
								 | 
							
								     * with the Hierarchical Clustering algortihm, we seed several centers for the
							 | 
						||
| 
								 | 
							
								     * current node by picking some of its points. Then in a first pass each point
							 | 
						||
| 
								 | 
							
								     * of the node is then related to its closest center. Now let's have a look at
							 | 
						||
| 
								 | 
							
								     * the 5 central dimensions of the 9 following points:
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * xxxxxx11100xxxxx (1)
							 | 
						||
| 
								 | 
							
								     * xxxxxx11010xxxxx (2)
							 | 
						||
| 
								 | 
							
								     * xxxxxx11001xxxxx (3)
							 | 
						||
| 
								 | 
							
								     * xxxxxx10110xxxxx (4)
							 | 
						||
| 
								 | 
							
								     * xxxxxx10101xxxxx (5)
							 | 
						||
| 
								 | 
							
								     * xxxxxx10011xxxxx (6)
							 | 
						||
| 
								 | 
							
								     * xxxxxx01110xxxxx (7)
							 | 
						||
| 
								 | 
							
								     * xxxxxx01101xxxxx (8)
							 | 
						||
| 
								 | 
							
								     * xxxxxx01011xxxxx (9)
							 | 
						||
| 
								 | 
							
								     * sum   _____
							 | 
						||
| 
								 | 
							
								     * of 1: 66555
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Even if the barycenter notion doesn't apply, we can set a center
							 | 
						||
| 
								 | 
							
								     * xxxxxx11111xxxxx that will better fit the five dimensions we are focusing
							 | 
						||
| 
								 | 
							
								     * on for these points.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Note that convergence isn't ensured anymore. In practice, using Gonzales
							 | 
						||
| 
								 | 
							
								     * as seeding algorithm should be fine for getting convergence ("iterations"
							 | 
						||
| 
								 | 
							
								     * value can be set to -1). But with KMeans++ seeding you should definitely
							 | 
						||
| 
								 | 
							
								     * set a maximum number of iterations (but make it higher than the "iterations"
							 | 
						||
| 
								 | 
							
								     * default value of 11).
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     node = the node to cluster
							 | 
						||
| 
								 | 
							
								     *     indices = indices of the points belonging to the current node
							 | 
						||
| 
								 | 
							
								     *     indices_length = number of points in the current node
							 | 
						||
| 
								 | 
							
								     *     branching = the branching factor to use in the clustering
							 | 
						||
| 
								 | 
							
								     *     level = 0 for the root node, it increases with the subdivision levels
							 | 
						||
| 
								 | 
							
								     *     centers = clusters centers to compute
							 | 
						||
| 
								 | 
							
								     *     radiuses = radiuses of clusters
							 | 
						||
| 
								 | 
							
								     *     belongs_to = LookUp Table returning, for a given indice id, the center id it belongs to
							 | 
						||
| 
								 | 
							
								     *     count = array storing the number of indices for a given center id
							 | 
						||
| 
								 | 
							
								     *     identifier = dummy pointer on an instance of Distance (use to branch correctly among templates)
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void refineAndSplitClustering(
							 | 
						||
| 
								 | 
							
								            KMeansNodePtr node, int* indices, int indices_length, int branching,
							 | 
						||
| 
								 | 
							
								            int level, CentersType** centers, std::vector<DistanceType>& radiuses,
							 | 
						||
| 
								 | 
							
								            int* belongs_to, int* count, const cvflann::HammingLUT* identifier)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        (void)identifier;
							 | 
						||
| 
								 | 
							
								        refineBitfieldClustering(
							 | 
						||
| 
								 | 
							
								                    indices, indices_length, branching, centers, radiuses, belongs_to, count);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
							 | 
						||
| 
								 | 
							
								                                        level, centers, radiuses, belongs_to, count);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void refineAndSplitClustering(
							 | 
						||
| 
								 | 
							
								            KMeansNodePtr node, int* indices, int indices_length, int branching,
							 | 
						||
| 
								 | 
							
								            int level, CentersType** centers, std::vector<DistanceType>& radiuses,
							 | 
						||
| 
								 | 
							
								            int* belongs_to, int* count, const cvflann::Hamming<unsigned char>* identifier)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        (void)identifier;
							 | 
						||
| 
								 | 
							
								        refineBitfieldClustering(
							 | 
						||
| 
								 | 
							
								                    indices, indices_length, branching, centers, radiuses, belongs_to, count);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
							 | 
						||
| 
								 | 
							
								                                        level, centers, radiuses, belongs_to, count);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void refineAndSplitClustering(
							 | 
						||
| 
								 | 
							
								            KMeansNodePtr node, int* indices, int indices_length, int branching,
							 | 
						||
| 
								 | 
							
								            int level, CentersType** centers, std::vector<DistanceType>& radiuses,
							 | 
						||
| 
								 | 
							
								            int* belongs_to, int* count, const cvflann::Hamming2<unsigned char>* identifier)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        (void)identifier;
							 | 
						||
| 
								 | 
							
								        refineBitfieldClustering(
							 | 
						||
| 
								 | 
							
								                    indices, indices_length, branching, centers, radiuses, belongs_to, count);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
							 | 
						||
| 
								 | 
							
								                                        level, centers, radiuses, belongs_to, count);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void refineAndSplitClustering(
							 | 
						||
| 
								 | 
							
								            KMeansNodePtr node, int* indices, int indices_length, int branching,
							 | 
						||
| 
								 | 
							
								            int level, CentersType** centers, std::vector<DistanceType>& radiuses,
							 | 
						||
| 
								 | 
							
								            int* belongs_to, int* count, const cvflann::DNAmmingLUT* identifier)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        (void)identifier;
							 | 
						||
| 
								 | 
							
								        refineDnaClustering(
							 | 
						||
| 
								 | 
							
								                    indices, indices_length, branching, centers, radiuses, belongs_to, count);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
							 | 
						||
| 
								 | 
							
								                                        level, centers, radiuses, belongs_to, count);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void refineAndSplitClustering(
							 | 
						||
| 
								 | 
							
								            KMeansNodePtr node, int* indices, int indices_length, int branching,
							 | 
						||
| 
								 | 
							
								            int level, CentersType** centers, std::vector<DistanceType>& radiuses,
							 | 
						||
| 
								 | 
							
								            int* belongs_to, int* count, const cvflann::DNAmming2<unsigned char>* identifier)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        (void)identifier;
							 | 
						||
| 
								 | 
							
								        refineDnaClustering(
							 | 
						||
| 
								 | 
							
								                    indices, indices_length, branching, centers, radiuses, belongs_to, count);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
							 | 
						||
| 
								 | 
							
								                                        level, centers, radiuses, belongs_to, count);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * The method responsible with actually doing the recursive hierarchical
							 | 
						||
| 
								 | 
							
								     * clustering
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     node = the node to cluster
							 | 
						||
| 
								 | 
							
								     *     indices = indices of the points belonging to the current node
							 | 
						||
| 
								 | 
							
								     *     branching = the branching factor to use in the clustering
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        node->size = indices_length;
							 | 
						||
| 
								 | 
							
								        node->level = level;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (indices_length < branching) {
							 | 
						||
| 
								 | 
							
								            node->indices = indices;
							 | 
						||
| 
								 | 
							
								            std::sort(node->indices,node->indices+indices_length);
							 | 
						||
| 
								 | 
							
								            node->childs = NULL;
							 | 
						||
| 
								 | 
							
								            return;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        cv::AutoBuffer<int> centers_idx_buf(branching);
							 | 
						||
| 
								 | 
							
								        int* centers_idx = centers_idx_buf.data();
							 | 
						||
| 
								 | 
							
								        int centers_length;
							 | 
						||
| 
								 | 
							
								        (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (centers_length<branching) {
							 | 
						||
| 
								 | 
							
								            node->indices = indices;
							 | 
						||
| 
								 | 
							
								            std::sort(node->indices,node->indices+indices_length);
							 | 
						||
| 
								 | 
							
								            node->childs = NULL;
							 | 
						||
| 
								 | 
							
								            return;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        std::vector<DistanceType> radiuses(branching);
							 | 
						||
| 
								 | 
							
								        cv::AutoBuffer<int> count_buf(branching);
							 | 
						||
| 
								 | 
							
								        int* count = count_buf.data();
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<branching; ++i) {
							 | 
						||
| 
								 | 
							
								            radiuses[i] = 0;
							 | 
						||
| 
								 | 
							
								            count[i] = 0;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        //	assign points to clusters
							 | 
						||
| 
								 | 
							
								        cv::AutoBuffer<int> belongs_to_buf(indices_length);
							 | 
						||
| 
								 | 
							
								        int* belongs_to = belongs_to_buf.data();
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<indices_length; ++i) {
							 | 
						||
| 
								 | 
							
								            DistanceType sq_dist = distance_(dataset_[indices[i]], dataset_[centers_idx[0]], veclen_);
							 | 
						||
| 
								 | 
							
								            belongs_to[i] = 0;
							 | 
						||
| 
								 | 
							
								            for (int j=1; j<branching; ++j) {
							 | 
						||
| 
								 | 
							
								                DistanceType new_sq_dist = distance_(dataset_[indices[i]], dataset_[centers_idx[j]], veclen_);
							 | 
						||
| 
								 | 
							
								                if (sq_dist>new_sq_dist) {
							 | 
						||
| 
								 | 
							
								                    belongs_to[i] = j;
							 | 
						||
| 
								 | 
							
								                    sq_dist = new_sq_dist;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            if (sq_dist>radiuses[belongs_to[i]]) {
							 | 
						||
| 
								 | 
							
								                radiuses[belongs_to[i]] = sq_dist;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            count[belongs_to[i]]++;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        CentersType** centers = new CentersType*[branching];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        Distance* dummy = NULL;
							 | 
						||
| 
								 | 
							
								        refineAndSplitClustering(node, indices, indices_length, branching, level,
							 | 
						||
| 
								 | 
							
								                                 centers, radiuses, belongs_to, count, dummy);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        delete[] centers;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Performs one descent in the hierarchical k-means tree. The branches not
							 | 
						||
| 
								 | 
							
								     * visited are stored in a priority queue.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *      node = node to explore
							 | 
						||
| 
								 | 
							
								     *      result = container for the k-nearest neighbors found
							 | 
						||
| 
								 | 
							
								     *      vec = query points
							 | 
						||
| 
								 | 
							
								     *      checks = how many points in the dataset have been checked so far
							 | 
						||
| 
								 | 
							
								     *      maxChecks = maximum dataset points to checks
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
							 | 
						||
| 
								 | 
							
								                const cv::Ptr<Heap<BranchSt>>& heap)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        // Ignore those clusters that are too far away
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								            DistanceType bsq = distance_(vec, node->pivot, veclen_);
							 | 
						||
| 
								 | 
							
								            DistanceType rsq = node->radius;
							 | 
						||
| 
								 | 
							
								            DistanceType wsq = result.worstDist();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            if (isSquareDistance<Distance>())
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								                DistanceType val = bsq-rsq-wsq;
							 | 
						||
| 
								 | 
							
								                if ((val>0) && (val*val > 4*rsq*wsq))
							 | 
						||
| 
								 | 
							
								                    return;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								                if (bsq-rsq > wsq)
							 | 
						||
| 
								 | 
							
								                    return;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (node->childs==NULL) {
							 | 
						||
| 
								 | 
							
								            if ((checks>=maxChecks) && result.full()) {
							 | 
						||
| 
								 | 
							
								                return;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            checks += node->size;
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<node->size; ++i) {
							 | 
						||
| 
								 | 
							
								                int index = node->indices[i];
							 | 
						||
| 
								 | 
							
								                DistanceType dist = distance_(dataset_[index], vec, veclen_);
							 | 
						||
| 
								 | 
							
								                result.addPoint(dist, index);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            DistanceType* domain_distances = new DistanceType[branching_];
							 | 
						||
| 
								 | 
							
								            int closest_center = exploreNodeBranches(node, vec, domain_distances, heap);
							 | 
						||
| 
								 | 
							
								            delete[] domain_distances;
							 | 
						||
| 
								 | 
							
								            findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Helper function that computes the nearest childs of a node to a given query point.
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     node = the node
							 | 
						||
| 
								 | 
							
								     *     q = the query point
							 | 
						||
| 
								 | 
							
								     *     distances = array with the distances to each child node.
							 | 
						||
| 
								 | 
							
								     * Returns:
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, const cv::Ptr<Heap<BranchSt>>& heap)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        int best_index = 0;
							 | 
						||
| 
								 | 
							
								        domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_);
							 | 
						||
| 
								 | 
							
								        for (int i=1; i<branching_; ++i) {
							 | 
						||
| 
								 | 
							
								            domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_);
							 | 
						||
| 
								 | 
							
								            if (domain_distances[i]<domain_distances[best_index]) {
							 | 
						||
| 
								 | 
							
								                best_index = i;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        //		float* best_center = node->childs[best_index]->pivot;
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<branching_; ++i) {
							 | 
						||
| 
								 | 
							
								            if (i != best_index) {
							 | 
						||
| 
								 | 
							
								                domain_distances[i] -= cvflann::round<DistanceType>(
							 | 
						||
| 
								 | 
							
								                                        cb_index_*node->childs[i]->variance );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                //				float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q);
							 | 
						||
| 
								 | 
							
								                //				if (domain_distances[i]<dist_to_border) {
							 | 
						||
| 
								 | 
							
								                //					domain_distances[i] = dist_to_border;
							 | 
						||
| 
								 | 
							
								                //				}
							 | 
						||
| 
								 | 
							
								                heap->insert(BranchSt(node->childs[i],domain_distances[i]));
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        return best_index;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Function the performs exact nearest neighbor search by traversing the entire tree.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        // Ignore those clusters that are too far away
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								            DistanceType bsq = distance_(vec, node->pivot, veclen_);
							 | 
						||
| 
								 | 
							
								            DistanceType rsq = node->radius;
							 | 
						||
| 
								 | 
							
								            DistanceType wsq = result.worstDist();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            if (isSquareDistance<Distance>())
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								                DistanceType val = bsq-rsq-wsq;
							 | 
						||
| 
								 | 
							
								                if ((val>0) && (val*val > 4*rsq*wsq))
							 | 
						||
| 
								 | 
							
								                    return;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								                if (bsq-rsq > wsq)
							 | 
						||
| 
								 | 
							
								                    return;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (node->childs==NULL) {
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<node->size; ++i) {
							 | 
						||
| 
								 | 
							
								                int index = node->indices[i];
							 | 
						||
| 
								 | 
							
								                DistanceType dist = distance_(dataset_[index], vec, veclen_);
							 | 
						||
| 
								 | 
							
								                result.addPoint(dist, index);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            int* sort_indices = new int[branching_];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            getCenterOrdering(node, vec, sort_indices);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<branching_; ++i) {
							 | 
						||
| 
								 | 
							
								                findExactNN(node->childs[sort_indices[i]],result,vec);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            delete[] sort_indices;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Helper function.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * I computes the order in which to traverse the child nodes of a particular node.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        DistanceType* domain_distances = new DistanceType[branching_];
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<branching_; ++i) {
							 | 
						||
| 
								 | 
							
								            DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            int j=0;
							 | 
						||
| 
								 | 
							
								            while (domain_distances[j]<dist && j<i)
							 | 
						||
| 
								 | 
							
								                j++;
							 | 
						||
| 
								 | 
							
								            for (int k=i; k>j; --k) {
							 | 
						||
| 
								 | 
							
								                domain_distances[k] = domain_distances[k-1];
							 | 
						||
| 
								 | 
							
								                sort_indices[k] = sort_indices[k-1];
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            domain_distances[j] = dist;
							 | 
						||
| 
								 | 
							
								            sort_indices[j] = i;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        delete[] domain_distances;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Method that computes the squared distance from the query point q
							 | 
						||
| 
								 | 
							
								     * from inside region with center c to the border between this
							 | 
						||
| 
								 | 
							
								     * region and the region with center p
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        DistanceType sum = 0;
							 | 
						||
| 
								 | 
							
								        DistanceType sum2 = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<veclen_; ++i) {
							 | 
						||
| 
								 | 
							
								            DistanceType t = c[i]-p[i];
							 | 
						||
| 
								 | 
							
								            sum += t*(q[i]-(c[i]+p[i])/2);
							 | 
						||
| 
								 | 
							
								            sum2 += t*t;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        return sum*sum/sum2;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Helper function the descends in the hierarchical k-means tree by splitting those clusters that minimize
							 | 
						||
| 
								 | 
							
								     * the overall variance of the clustering.
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     root = root node
							 | 
						||
| 
								 | 
							
								     *     clusters = array with clusters centers (return value)
							 | 
						||
| 
								 | 
							
								     *     varianceValue = variance of the clustering (return value)
							 | 
						||
| 
								 | 
							
								     * Returns:
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        int clusterCount = 1;
							 | 
						||
| 
								 | 
							
								        clusters[0] = root;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        DistanceType meanVariance = root->variance*root->size;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        while (clusterCount<clusters_length) {
							 | 
						||
| 
								 | 
							
								            DistanceType minVariance = (std::numeric_limits<DistanceType>::max)();
							 | 
						||
| 
								 | 
							
								            int splitIndex = -1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            for (int i=0; i<clusterCount; ++i) {
							 | 
						||
| 
								 | 
							
								                if (clusters[i]->childs != NULL) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                    DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                    for (int j=0; j<branching_; ++j) {
							 | 
						||
| 
								 | 
							
								                        variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size;
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								                    if (variance<minVariance) {
							 | 
						||
| 
								 | 
							
								                        minVariance = variance;
							 | 
						||
| 
								 | 
							
								                        splitIndex = i;
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            if (splitIndex==-1) break;
							 | 
						||
| 
								 | 
							
								            if ( (branching_+clusterCount-1) > clusters_length) break;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            meanVariance = minVariance;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            // split node
							 | 
						||
| 
								 | 
							
								            KMeansNodePtr toSplit = clusters[splitIndex];
							 | 
						||
| 
								 | 
							
								            clusters[splitIndex] = toSplit->childs[0];
							 | 
						||
| 
								 | 
							
								            for (int i=1; i<branching_; ++i) {
							 | 
						||
| 
								 | 
							
								                clusters[clusterCount++] = toSplit->childs[i];
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        varianceValue = meanVariance/root->size;
							 | 
						||
| 
								 | 
							
								        return clusterCount;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								private:
							 | 
						||
| 
								 | 
							
								    /** The branching factor used in the hierarchical k-means clustering */
							 | 
						||
| 
								 | 
							
								    int branching_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** Number of kmeans trees (default is one) */
							 | 
						||
| 
								 | 
							
								    int trees_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** Maximum number of iterations to use when performing k-means clustering */
							 | 
						||
| 
								 | 
							
								    int iterations_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** Algorithm for choosing the cluster centers */
							 | 
						||
| 
								 | 
							
								    flann_centers_init_t centers_init_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Cluster border index. This is used in the tree search phase when determining
							 | 
						||
| 
								 | 
							
								     * the closest cluster to explore next. A zero value takes into account only
							 | 
						||
| 
								 | 
							
								     * the cluster centres, a value greater then zero also take into account the size
							 | 
						||
| 
								 | 
							
								     * of the cluster.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    float cb_index_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * The dataset used by this index
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    const Matrix<ElementType> dataset_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** Index parameters */
							 | 
						||
| 
								 | 
							
								    IndexParams index_params_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Number of features in the dataset.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    size_t size_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Length of each feature.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    size_t veclen_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * The root node in the tree.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    KMeansNodePtr* root_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     *  Array of indices to vectors in the dataset.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    int** indices_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * The distance
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    Distance distance_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Pooled memory allocator.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    PooledAllocator pool_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Memory occupied by the index.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    int memoryCounter_;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//! @endcond
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif //OPENCV_FLANN_KMEANS_INDEX_H_
							 |