You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
	
	
		
			404 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
		
		
			
		
	
	
			404 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
| 
								 
											3 years ago
										 
									 | 
							
								/***********************************************************************
							 | 
						||
| 
								 | 
							
								 * Software License Agreement (BSD License)
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
							 | 
						||
| 
								 | 
							
								 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * THE BSD LICENSE
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Redistribution and use in source and binary forms, with or without
							 | 
						||
| 
								 | 
							
								 * modification, are permitted provided that the following conditions
							 | 
						||
| 
								 | 
							
								 * are met:
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * 1. Redistributions of source code must retain the above copyright
							 | 
						||
| 
								 | 
							
								 *    notice, this list of conditions and the following disclaimer.
							 | 
						||
| 
								 | 
							
								 * 2. Redistributions in binary form must reproduce the above copyright
							 | 
						||
| 
								 | 
							
								 *    notice, this list of conditions and the following disclaimer in the
							 | 
						||
| 
								 | 
							
								 *    documentation and/or other materials provided with the distribution.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
							 | 
						||
| 
								 | 
							
								 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
							 | 
						||
| 
								 | 
							
								 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
							 | 
						||
| 
								 | 
							
								 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
							 | 
						||
| 
								 | 
							
								 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
							 | 
						||
| 
								 | 
							
								 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
							 | 
						||
| 
								 | 
							
								 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
							 | 
						||
| 
								 | 
							
								 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
							 | 
						||
| 
								 | 
							
								 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
							 | 
						||
| 
								 | 
							
								 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
							 | 
						||
| 
								 | 
							
								 *************************************************************************/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/***********************************************************************
							 | 
						||
| 
								 | 
							
								 * Author: Vincent Rabaud
							 | 
						||
| 
								 | 
							
								 *************************************************************************/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef OPENCV_FLANN_LSH_INDEX_H_
							 | 
						||
| 
								 | 
							
								#define OPENCV_FLANN_LSH_INDEX_H_
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//! @cond IGNORED
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <algorithm>
							 | 
						||
| 
								 | 
							
								#include <cstring>
							 | 
						||
| 
								 | 
							
								#include <map>
							 | 
						||
| 
								 | 
							
								#include <vector>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "nn_index.h"
							 | 
						||
| 
								 | 
							
								#include "matrix.h"
							 | 
						||
| 
								 | 
							
								#include "result_set.h"
							 | 
						||
| 
								 | 
							
								#include "heap.h"
							 | 
						||
| 
								 | 
							
								#include "lsh_table.h"
							 | 
						||
| 
								 | 
							
								#include "allocator.h"
							 | 
						||
| 
								 | 
							
								#include "random.h"
							 | 
						||
| 
								 | 
							
								#include "saving.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef _MSC_VER
							 | 
						||
| 
								 | 
							
								#pragma warning(push)
							 | 
						||
| 
								 | 
							
								#pragma warning(disable: 4702) //disable unreachable code
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace cvflann
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct LshIndexParams : public IndexParams
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    LshIndexParams(int table_number = 12, int key_size = 20, int multi_probe_level = 2)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        (*this)["algorithm"] = FLANN_INDEX_LSH;
							 | 
						||
| 
								 | 
							
								        // The number of hash tables to use
							 | 
						||
| 
								 | 
							
								        (*this)["table_number"] = table_number;
							 | 
						||
| 
								 | 
							
								        // The length of the key in the hash tables
							 | 
						||
| 
								 | 
							
								        (*this)["key_size"] = key_size;
							 | 
						||
| 
								 | 
							
								        // Number of levels to use in multi-probe (0 for standard LSH)
							 | 
						||
| 
								 | 
							
								        (*this)["multi_probe_level"] = multi_probe_level;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Locality-sensitive hashing  index
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Contains the tables and other information for indexing a set of points
							 | 
						||
| 
								 | 
							
								 * for nearest-neighbor matching.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								template<typename Distance>
							 | 
						||
| 
								 | 
							
								class LshIndex : public NNIndex<Distance>
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::ElementType ElementType;
							 | 
						||
| 
								 | 
							
								    typedef typename Distance::ResultType DistanceType;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** Constructor
							 | 
						||
| 
								 | 
							
								     * @param input_data dataset with the input features
							 | 
						||
| 
								 | 
							
								     * @param params parameters passed to the LSH algorithm
							 | 
						||
| 
								 | 
							
								     * @param d the distance used
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    LshIndex(const Matrix<ElementType>& input_data, const IndexParams& params = LshIndexParams(),
							 | 
						||
| 
								 | 
							
								             Distance d = Distance()) :
							 | 
						||
| 
								 | 
							
								        dataset_(input_data), index_params_(params), distance_(d)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        // cv::flann::IndexParams sets integer params as 'int', so it is used with get_param
							 | 
						||
| 
								 | 
							
								        // in place of 'unsigned int'
							 | 
						||
| 
								 | 
							
								        table_number_ = get_param(index_params_,"table_number",12);
							 | 
						||
| 
								 | 
							
								        key_size_ = get_param(index_params_,"key_size",20);
							 | 
						||
| 
								 | 
							
								        multi_probe_level_ = get_param(index_params_,"multi_probe_level",2);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        feature_size_ = (unsigned)dataset_.cols;
							 | 
						||
| 
								 | 
							
								        fill_xor_mask(0, key_size_, multi_probe_level_, xor_masks_);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    LshIndex(const LshIndex&);
							 | 
						||
| 
								 | 
							
								    LshIndex& operator=(const LshIndex&);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Builds the index
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void buildIndex() CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        tables_.resize(table_number_);
							 | 
						||
| 
								 | 
							
								        for (int i = 0; i < table_number_; ++i) {
							 | 
						||
| 
								 | 
							
								            lsh::LshTable<ElementType>& table = tables_[i];
							 | 
						||
| 
								 | 
							
								            table = lsh::LshTable<ElementType>(feature_size_, key_size_);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            // Add the features to the table
							 | 
						||
| 
								 | 
							
								            table.add(dataset_);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    flann_algorithm_t getType() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return FLANN_INDEX_LSH;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void saveIndex(FILE* stream) CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        save_value(stream,table_number_);
							 | 
						||
| 
								 | 
							
								        save_value(stream,key_size_);
							 | 
						||
| 
								 | 
							
								        save_value(stream,multi_probe_level_);
							 | 
						||
| 
								 | 
							
								        save_value(stream, dataset_);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    void loadIndex(FILE* stream) CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        load_value(stream, table_number_);
							 | 
						||
| 
								 | 
							
								        load_value(stream, key_size_);
							 | 
						||
| 
								 | 
							
								        load_value(stream, multi_probe_level_);
							 | 
						||
| 
								 | 
							
								        load_value(stream, dataset_);
							 | 
						||
| 
								 | 
							
								        // Building the index is so fast we can afford not storing it
							 | 
						||
| 
								 | 
							
								        buildIndex();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        index_params_["algorithm"] = getType();
							 | 
						||
| 
								 | 
							
								        index_params_["table_number"] = table_number_;
							 | 
						||
| 
								 | 
							
								        index_params_["key_size"] = key_size_;
							 | 
						||
| 
								 | 
							
								        index_params_["multi_probe_level"] = multi_probe_level_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     *  Returns size of index.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    size_t size() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return dataset_.rows;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Returns the length of an index feature.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    size_t veclen() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return feature_size_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Computes the index memory usage
							 | 
						||
| 
								 | 
							
								     * Returns: memory used by the index
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    int usedMemory() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return (int)(dataset_.rows * sizeof(int));
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    IndexParams getParameters() const CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return index_params_;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * \brief Perform k-nearest neighbor search
							 | 
						||
| 
								 | 
							
								     * \param[in] queries The query points for which to find the nearest neighbors
							 | 
						||
| 
								 | 
							
								     * \param[out] indices The indices of the nearest neighbors found
							 | 
						||
| 
								 | 
							
								     * \param[out] dists Distances to the nearest neighbors found
							 | 
						||
| 
								 | 
							
								     * \param[in] knn Number of nearest neighbors to return
							 | 
						||
| 
								 | 
							
								     * \param[in] params Search parameters
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        CV_Assert(queries.cols == veclen());
							 | 
						||
| 
								 | 
							
								        CV_Assert(indices.rows >= queries.rows);
							 | 
						||
| 
								 | 
							
								        CV_Assert(dists.rows >= queries.rows);
							 | 
						||
| 
								 | 
							
								        CV_Assert(int(indices.cols) >= knn);
							 | 
						||
| 
								 | 
							
								        CV_Assert(int(dists.cols) >= knn);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        KNNUniqueResultSet<DistanceType> resultSet(knn);
							 | 
						||
| 
								 | 
							
								        for (size_t i = 0; i < queries.rows; i++) {
							 | 
						||
| 
								 | 
							
								            resultSet.clear();
							 | 
						||
| 
								 | 
							
								            std::fill_n(indices[i], knn, -1);
							 | 
						||
| 
								 | 
							
								            std::fill_n(dists[i], knn, std::numeric_limits<DistanceType>::max());
							 | 
						||
| 
								 | 
							
								            findNeighbors(resultSet, queries[i], params);
							 | 
						||
| 
								 | 
							
								            if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn);
							 | 
						||
| 
								 | 
							
								            else resultSet.copy(indices[i], dists[i], knn);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /**
							 | 
						||
| 
								 | 
							
								     * Find set of nearest neighbors to vec. Their indices are stored inside
							 | 
						||
| 
								 | 
							
								     * the result object.
							 | 
						||
| 
								 | 
							
								     *
							 | 
						||
| 
								 | 
							
								     * Params:
							 | 
						||
| 
								 | 
							
								     *     result = the result object in which the indices of the nearest-neighbors are stored
							 | 
						||
| 
								 | 
							
								     *     vec = the vector for which to search the nearest neighbors
							 | 
						||
| 
								 | 
							
								     *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& /*searchParams*/) CV_OVERRIDE
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        getNeighbors(vec, result);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								private:
							 | 
						||
| 
								 | 
							
								    /** Defines the comparator on score and index
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    typedef std::pair<float, unsigned int> ScoreIndexPair;
							 | 
						||
| 
								 | 
							
								    struct SortScoreIndexPairOnSecond
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        bool operator()(const ScoreIndexPair& left, const ScoreIndexPair& right) const
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								            return left.second < right.second;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** Fills the different xor masks to use when getting the neighbors in multi-probe LSH
							 | 
						||
| 
								 | 
							
								     * @param key the key we build neighbors from
							 | 
						||
| 
								 | 
							
								     * @param lowest_index the lowest index of the bit set
							 | 
						||
| 
								 | 
							
								     * @param level the multi-probe level we are at
							 | 
						||
| 
								 | 
							
								     * @param xor_masks all the xor mask
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void fill_xor_mask(lsh::BucketKey key, int lowest_index, unsigned int level,
							 | 
						||
| 
								 | 
							
								                       std::vector<lsh::BucketKey>& xor_masks)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        xor_masks.push_back(key);
							 | 
						||
| 
								 | 
							
								        if (level == 0) return;
							 | 
						||
| 
								 | 
							
								        for (int index = lowest_index - 1; index >= 0; --index) {
							 | 
						||
| 
								 | 
							
								            // Create a new key
							 | 
						||
| 
								 | 
							
								            lsh::BucketKey new_key = key | (1 << index);
							 | 
						||
| 
								 | 
							
								            fill_xor_mask(new_key, index, level - 1, xor_masks);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** Performs the approximate nearest-neighbor search.
							 | 
						||
| 
								 | 
							
								     * @param vec the feature to analyze
							 | 
						||
| 
								 | 
							
								     * @param do_radius flag indicating if we check the radius too
							 | 
						||
| 
								 | 
							
								     * @param radius the radius if it is a radius search
							 | 
						||
| 
								 | 
							
								     * @param do_k flag indicating if we limit the number of nn
							 | 
						||
| 
								 | 
							
								     * @param k_nn the number of nearest neighbors
							 | 
						||
| 
								 | 
							
								     * @param checked_average used for debugging
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void getNeighbors(const ElementType* vec, bool /*do_radius*/, float radius, bool do_k, unsigned int k_nn,
							 | 
						||
| 
								 | 
							
								                      float& /*checked_average*/)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        static std::vector<ScoreIndexPair> score_index_heap;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (do_k) {
							 | 
						||
| 
								 | 
							
								            unsigned int worst_score = std::numeric_limits<unsigned int>::max();
							 | 
						||
| 
								 | 
							
								            typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
							 | 
						||
| 
								 | 
							
								            typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
							 | 
						||
| 
								 | 
							
								            for (; table != table_end; ++table) {
							 | 
						||
| 
								 | 
							
								                size_t key = table->getKey(vec);
							 | 
						||
| 
								 | 
							
								                std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
							 | 
						||
| 
								 | 
							
								                std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
							 | 
						||
| 
								 | 
							
								                for (; xor_mask != xor_mask_end; ++xor_mask) {
							 | 
						||
| 
								 | 
							
								                    size_t sub_key = key ^ (*xor_mask);
							 | 
						||
| 
								 | 
							
								                    const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
							 | 
						||
| 
								 | 
							
								                    if (bucket == 0) continue;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                    // Go over each descriptor index
							 | 
						||
| 
								 | 
							
								                    std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
							 | 
						||
| 
								 | 
							
								                    std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
							 | 
						||
| 
								 | 
							
								                    DistanceType hamming_distance;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                    // Process the rest of the candidates
							 | 
						||
| 
								 | 
							
								                    for (; training_index < last_training_index; ++training_index) {
							 | 
						||
| 
								 | 
							
								                        hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                        if (hamming_distance < worst_score) {
							 | 
						||
| 
								 | 
							
								                            // Insert the new element
							 | 
						||
| 
								 | 
							
								                            score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
							 | 
						||
| 
								 | 
							
								                            std::push_heap(score_index_heap.begin(), score_index_heap.end());
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                            if (score_index_heap.size() > (unsigned int)k_nn) {
							 | 
						||
| 
								 | 
							
								                                // Remove the highest distance value as we have too many elements
							 | 
						||
| 
								 | 
							
								                                std::pop_heap(score_index_heap.begin(), score_index_heap.end());
							 | 
						||
| 
								 | 
							
								                                score_index_heap.pop_back();
							 | 
						||
| 
								 | 
							
								                                // Keep track of the worst score
							 | 
						||
| 
								 | 
							
								                                worst_score = score_index_heap.front().first;
							 | 
						||
| 
								 | 
							
								                            }
							 | 
						||
| 
								 | 
							
								                        }
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								            typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
							 | 
						||
| 
								 | 
							
								            typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
							 | 
						||
| 
								 | 
							
								            for (; table != table_end; ++table) {
							 | 
						||
| 
								 | 
							
								                size_t key = table->getKey(vec);
							 | 
						||
| 
								 | 
							
								                std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
							 | 
						||
| 
								 | 
							
								                std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
							 | 
						||
| 
								 | 
							
								                for (; xor_mask != xor_mask_end; ++xor_mask) {
							 | 
						||
| 
								 | 
							
								                    size_t sub_key = key ^ (*xor_mask);
							 | 
						||
| 
								 | 
							
								                    const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
							 | 
						||
| 
								 | 
							
								                    if (bucket == 0) continue;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                    // Go over each descriptor index
							 | 
						||
| 
								 | 
							
								                    std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
							 | 
						||
| 
								 | 
							
								                    std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
							 | 
						||
| 
								 | 
							
								                    DistanceType hamming_distance;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                    // Process the rest of the candidates
							 | 
						||
| 
								 | 
							
								                    for (; training_index < last_training_index; ++training_index) {
							 | 
						||
| 
								 | 
							
								                        // Compute the Hamming distance
							 | 
						||
| 
								 | 
							
								                        hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
							 | 
						||
| 
								 | 
							
								                        if (hamming_distance < radius) score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
							 | 
						||
| 
								 | 
							
								                    }
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** Performs the approximate nearest-neighbor search.
							 | 
						||
| 
								 | 
							
								     * This is a slower version than the above as it uses the ResultSet
							 | 
						||
| 
								 | 
							
								     * @param vec the feature to analyze
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void getNeighbors(const ElementType* vec, ResultSet<DistanceType>& result)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
							 | 
						||
| 
								 | 
							
								        typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
							 | 
						||
| 
								 | 
							
								        for (; table != table_end; ++table) {
							 | 
						||
| 
								 | 
							
								            size_t key = table->getKey(vec);
							 | 
						||
| 
								 | 
							
								            std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
							 | 
						||
| 
								 | 
							
								            std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
							 | 
						||
| 
								 | 
							
								            for (; xor_mask != xor_mask_end; ++xor_mask) {
							 | 
						||
| 
								 | 
							
								                size_t sub_key = key ^ (*xor_mask);
							 | 
						||
| 
								 | 
							
								                const lsh::Bucket* bucket = table->getBucketFromKey((lsh::BucketKey)sub_key);
							 | 
						||
| 
								 | 
							
								                if (bucket == 0) continue;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                // Go over each descriptor index
							 | 
						||
| 
								 | 
							
								                std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
							 | 
						||
| 
								 | 
							
								                std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
							 | 
						||
| 
								 | 
							
								                DistanceType hamming_distance;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                // Process the rest of the candidates
							 | 
						||
| 
								 | 
							
								                for (; training_index < last_training_index; ++training_index) {
							 | 
						||
| 
								 | 
							
								                    // Compute the Hamming distance
							 | 
						||
| 
								 | 
							
								                    hamming_distance = distance_(vec, dataset_[*training_index], (int)dataset_.cols);
							 | 
						||
| 
								 | 
							
								                    result.addPoint(hamming_distance, *training_index);
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** The different hash tables */
							 | 
						||
| 
								 | 
							
								    std::vector<lsh::LshTable<ElementType> > tables_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** The data the LSH tables where built from */
							 | 
						||
| 
								 | 
							
								    Matrix<ElementType> dataset_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** The size of the features (as ElementType[]) */
							 | 
						||
| 
								 | 
							
								    unsigned int feature_size_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    IndexParams index_params_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** table number */
							 | 
						||
| 
								 | 
							
								    int table_number_;
							 | 
						||
| 
								 | 
							
								    /** key size */
							 | 
						||
| 
								 | 
							
								    int key_size_;
							 | 
						||
| 
								 | 
							
								    /** How far should we look for neighbors in multi-probe LSH */
							 | 
						||
| 
								 | 
							
								    int multi_probe_level_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** The XOR masks to apply to a key to get the neighboring buckets */
							 | 
						||
| 
								 | 
							
								    std::vector<lsh::BucketKey> xor_masks_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Distance distance_;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef _MSC_VER
							 | 
						||
| 
								 | 
							
								#pragma warning(pop)
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//! @endcond
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif //OPENCV_FLANN_LSH_INDEX_H_
							 |