You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
	
	
		
			318 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
		
		
			
		
	
	
			318 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
| 
								 
											3 years ago
										 
									 | 
							
								/*M///////////////////////////////////////////////////////////////////////////////////////
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//  By downloading, copying, installing or using the software you agree to this license.
							 | 
						||
| 
								 | 
							
								//  If you do not agree to this license, do not download, install,
							 | 
						||
| 
								 | 
							
								//  copy or use the software.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//                          License Agreement
							 | 
						||
| 
								 | 
							
								//                For Open Source Computer Vision Library
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
							 | 
						||
| 
								 | 
							
								// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
							 | 
						||
| 
								 | 
							
								// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
							 | 
						||
| 
								 | 
							
								// Third party copyrights are property of their respective owners.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Redistribution and use in source and binary forms, with or without modification,
							 | 
						||
| 
								 | 
							
								// are permitted provided that the following conditions are met:
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//   * Redistribution's of source code must retain the above copyright notice,
							 | 
						||
| 
								 | 
							
								//     this list of conditions and the following disclaimer.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//   * Redistribution's in binary form must reproduce the above copyright notice,
							 | 
						||
| 
								 | 
							
								//     this list of conditions and the following disclaimer in the documentation
							 | 
						||
| 
								 | 
							
								//     and/or other materials provided with the distribution.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//   * The name of the copyright holders may not be used to endorse or promote products
							 | 
						||
| 
								 | 
							
								//     derived from this software without specific prior written permission.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// This software is provided by the copyright holders and contributors "as is" and
							 | 
						||
| 
								 | 
							
								// any express or implied warranties, including, but not limited to, the implied
							 | 
						||
| 
								 | 
							
								// warranties of merchantability and fitness for a particular purpose are disclaimed.
							 | 
						||
| 
								 | 
							
								// In no event shall the Intel Corporation or contributors be liable for any direct,
							 | 
						||
| 
								 | 
							
								// indirect, incidental, special, exemplary, or consequential damages
							 | 
						||
| 
								 | 
							
								// (including, but not limited to, procurement of substitute goods or services;
							 | 
						||
| 
								 | 
							
								// loss of use, data, or profits; or business interruption) however caused
							 | 
						||
| 
								 | 
							
								// and on any theory of liability, whether in contract, strict liability,
							 | 
						||
| 
								 | 
							
								// or tort (including negligence or otherwise) arising in any way out of
							 | 
						||
| 
								 | 
							
								// the use of this software, even if advised of the possibility of such damage.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//M*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef OPENCV_BACKGROUND_SEGM_HPP
							 | 
						||
| 
								 | 
							
								#define OPENCV_BACKGROUND_SEGM_HPP
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "opencv2/core.hpp"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace cv
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//! @addtogroup video_motion
							 | 
						||
| 
								 | 
							
								//! @{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Base class for background/foreground segmentation. :
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The class is only used to define the common interface for the whole family of background/foreground
							 | 
						||
| 
								 | 
							
								segmentation algorithms.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								class CV_EXPORTS_W BackgroundSubtractor : public Algorithm
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    /** @brief Computes a foreground mask.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @param image Next video frame.
							 | 
						||
| 
								 | 
							
								    @param fgmask The output foreground mask as an 8-bit binary image.
							 | 
						||
| 
								 | 
							
								    @param learningRate The value between 0 and 1 that indicates how fast the background model is
							 | 
						||
| 
								 | 
							
								    learnt. Negative parameter value makes the algorithm to use some automatically chosen learning
							 | 
						||
| 
								 | 
							
								    rate. 0 means that the background model is not updated at all, 1 means that the background model
							 | 
						||
| 
								 | 
							
								    is completely reinitialized from the last frame.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void apply(InputArray image, OutputArray fgmask, double learningRate=-1) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Computes a background image.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @param backgroundImage The output background image.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @note Sometimes the background image can be very blurry, as it contain the average background
							 | 
						||
| 
								 | 
							
								    statistics.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void getBackgroundImage(OutputArray backgroundImage) const = 0;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The class implements the Gaussian mixture model background subtraction described in @cite Zivkovic2004
							 | 
						||
| 
								 | 
							
								and @cite Zivkovic2006 .
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								class CV_EXPORTS_W BackgroundSubtractorMOG2 : public BackgroundSubtractor
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    /** @brief Returns the number of last frames that affect the background model
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getHistory() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Sets the number of last frames that affect the background model
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setHistory(int history) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Returns the number of gaussian components in the background model
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getNMixtures() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Sets the number of gaussian components in the background model.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The model needs to be reinitalized to reserve memory.
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setNMixtures(int nmixtures) = 0;//needs reinitialization!
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Returns the "background ratio" parameter of the algorithm
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If a foreground pixel keeps semi-constant value for about backgroundRatio\*history frames, it's
							 | 
						||
| 
								 | 
							
								    considered background and added to the model as a center of a new component. It corresponds to TB
							 | 
						||
| 
								 | 
							
								    parameter in the paper.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual double getBackgroundRatio() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Sets the "background ratio" parameter of the algorithm
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setBackgroundRatio(double ratio) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Returns the variance threshold for the pixel-model match
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The main threshold on the squared Mahalanobis distance to decide if the sample is well described by
							 | 
						||
| 
								 | 
							
								    the background model or not. Related to Cthr from the paper.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual double getVarThreshold() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Sets the variance threshold for the pixel-model match
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setVarThreshold(double varThreshold) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Returns the variance threshold for the pixel-model match used for new mixture component generation
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the
							 | 
						||
| 
								 | 
							
								    existing components (corresponds to Tg in the paper). If a pixel is not close to any component, it
							 | 
						||
| 
								 | 
							
								    is considered foreground or added as a new component. 3 sigma =\> Tg=3\*3=9 is default. A smaller Tg
							 | 
						||
| 
								 | 
							
								    value generates more components. A higher Tg value may result in a small number of components but
							 | 
						||
| 
								 | 
							
								    they can grow too large.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual double getVarThresholdGen() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Sets the variance threshold for the pixel-model match used for new mixture component generation
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setVarThresholdGen(double varThresholdGen) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Returns the initial variance of each gaussian component
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual double getVarInit() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Sets the initial variance of each gaussian component
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setVarInit(double varInit) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual double getVarMin() const = 0;
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setVarMin(double varMin) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual double getVarMax() const = 0;
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setVarMax(double varMax) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Returns the complexity reduction threshold
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    This parameter defines the number of samples needed to accept to prove the component exists. CT=0.05
							 | 
						||
| 
								 | 
							
								    is a default value for all the samples. By setting CT=0 you get an algorithm very similar to the
							 | 
						||
| 
								 | 
							
								    standard Stauffer&Grimson algorithm.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual double getComplexityReductionThreshold() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Sets the complexity reduction threshold
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setComplexityReductionThreshold(double ct) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Returns the shadow detection flag
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorMOG2 for
							 | 
						||
| 
								 | 
							
								    details.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual bool getDetectShadows() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Enables or disables shadow detection
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Returns the shadow value
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
							 | 
						||
| 
								 | 
							
								    in the mask always means background, 255 means foreground.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getShadowValue() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Sets the shadow value
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setShadowValue(int value) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Returns the shadow threshold
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
							 | 
						||
| 
								 | 
							
								    the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
							 | 
						||
| 
								 | 
							
								    is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiara,
							 | 
						||
| 
								 | 
							
								    *Detecting Moving Shadows...*, IEEE PAMI,2003.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual double getShadowThreshold() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Sets the shadow threshold
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setShadowThreshold(double threshold) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Computes a foreground mask.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @param image Next video frame. Floating point frame will be used without scaling and should be in range \f$[0,255]\f$.
							 | 
						||
| 
								 | 
							
								    @param fgmask The output foreground mask as an 8-bit binary image.
							 | 
						||
| 
								 | 
							
								    @param learningRate The value between 0 and 1 that indicates how fast the background model is
							 | 
						||
| 
								 | 
							
								    learnt. Negative parameter value makes the algorithm to use some automatically chosen learning
							 | 
						||
| 
								 | 
							
								    rate. 0 means that the background model is not updated at all, 1 means that the background model
							 | 
						||
| 
								 | 
							
								    is completely reinitialized from the last frame.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void apply(InputArray image, OutputArray fgmask, double learningRate=-1) CV_OVERRIDE = 0;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Creates MOG2 Background Subtractor
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@param history Length of the history.
							 | 
						||
| 
								 | 
							
								@param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model
							 | 
						||
| 
								 | 
							
								to decide whether a pixel is well described by the background model. This parameter does not
							 | 
						||
| 
								 | 
							
								affect the background update.
							 | 
						||
| 
								 | 
							
								@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
							 | 
						||
| 
								 | 
							
								speed a bit, so if you do not need this feature, set the parameter to false.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								CV_EXPORTS_W Ptr<BackgroundSubtractorMOG2>
							 | 
						||
| 
								 | 
							
								    createBackgroundSubtractorMOG2(int history=500, double varThreshold=16,
							 | 
						||
| 
								 | 
							
								                                   bool detectShadows=true);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief K-nearest neighbours - based Background/Foreground Segmentation Algorithm.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The class implements the K-nearest neighbours background subtraction described in @cite Zivkovic2006 .
							 | 
						||
| 
								 | 
							
								Very efficient if number of foreground pixels is low.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								class CV_EXPORTS_W BackgroundSubtractorKNN : public BackgroundSubtractor
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    /** @brief Returns the number of last frames that affect the background model
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getHistory() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Sets the number of last frames that affect the background model
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setHistory(int history) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Returns the number of data samples in the background model
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getNSamples() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Sets the number of data samples in the background model.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The model needs to be reinitalized to reserve memory.
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setNSamples(int _nN) = 0;//needs reinitialization!
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Returns the threshold on the squared distance between the pixel and the sample
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The threshold on the squared distance between the pixel and the sample to decide whether a pixel is
							 | 
						||
| 
								 | 
							
								    close to a data sample.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual double getDist2Threshold() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Sets the threshold on the squared distance
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setDist2Threshold(double _dist2Threshold) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Returns the number of neighbours, the k in the kNN.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    K is the number of samples that need to be within dist2Threshold in order to decide that that
							 | 
						||
| 
								 | 
							
								    pixel is matching the kNN background model.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getkNNSamples() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Sets the k in the kNN. How many nearest neighbours need to match.
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setkNNSamples(int _nkNN) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Returns the shadow detection flag
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorKNN for
							 | 
						||
| 
								 | 
							
								    details.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual bool getDetectShadows() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Enables or disables shadow detection
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Returns the shadow value
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
							 | 
						||
| 
								 | 
							
								    in the mask always means background, 255 means foreground.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getShadowValue() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Sets the shadow value
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setShadowValue(int value) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Returns the shadow threshold
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
							 | 
						||
| 
								 | 
							
								    the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
							 | 
						||
| 
								 | 
							
								    is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiara,
							 | 
						||
| 
								 | 
							
								    *Detecting Moving Shadows...*, IEEE PAMI,2003.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual double getShadowThreshold() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Sets the shadow threshold
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setShadowThreshold(double threshold) = 0;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Creates KNN Background Subtractor
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@param history Length of the history.
							 | 
						||
| 
								 | 
							
								@param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide
							 | 
						||
| 
								 | 
							
								whether a pixel is close to that sample. This parameter does not affect the background update.
							 | 
						||
| 
								 | 
							
								@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
							 | 
						||
| 
								 | 
							
								speed a bit, so if you do not need this feature, set the parameter to false.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								CV_EXPORTS_W Ptr<BackgroundSubtractorKNN>
							 | 
						||
| 
								 | 
							
								    createBackgroundSubtractorKNN(int history=500, double dist2Threshold=400.0,
							 | 
						||
| 
								 | 
							
								                                   bool detectShadows=true);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//! @} video_motion
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								} // cv
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif
							 |