You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
	
	
		
			858 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
		
		
			
		
	
	
			858 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
| 
								 
											3 years ago
										 
									 | 
							
								/*M///////////////////////////////////////////////////////////////////////////////////////
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//  By downloading, copying, installing or using the software you agree to this license.
							 | 
						||
| 
								 | 
							
								//  If you do not agree to this license, do not download, install,
							 | 
						||
| 
								 | 
							
								//  copy or use the software.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//                          License Agreement
							 | 
						||
| 
								 | 
							
								//                For Open Source Computer Vision Library
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
							 | 
						||
| 
								 | 
							
								// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
							 | 
						||
| 
								 | 
							
								// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
							 | 
						||
| 
								 | 
							
								// Third party copyrights are property of their respective owners.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Redistribution and use in source and binary forms, with or without modification,
							 | 
						||
| 
								 | 
							
								// are permitted provided that the following conditions are met:
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//   * Redistribution's of source code must retain the above copyright notice,
							 | 
						||
| 
								 | 
							
								//     this list of conditions and the following disclaimer.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//   * Redistribution's in binary form must reproduce the above copyright notice,
							 | 
						||
| 
								 | 
							
								//     this list of conditions and the following disclaimer in the documentation
							 | 
						||
| 
								 | 
							
								//     and/or other materials provided with the distribution.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//   * The name of the copyright holders may not be used to endorse or promote products
							 | 
						||
| 
								 | 
							
								//     derived from this software without specific prior written permission.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// This software is provided by the copyright holders and contributors "as is" and
							 | 
						||
| 
								 | 
							
								// any express or implied warranties, including, but not limited to, the implied
							 | 
						||
| 
								 | 
							
								// warranties of merchantability and fitness for a particular purpose are disclaimed.
							 | 
						||
| 
								 | 
							
								// In no event shall the Intel Corporation or contributors be liable for any direct,
							 | 
						||
| 
								 | 
							
								// indirect, incidental, special, exemplary, or consequential damages
							 | 
						||
| 
								 | 
							
								// (including, but not limited to, procurement of substitute goods or services;
							 | 
						||
| 
								 | 
							
								// loss of use, data, or profits; or business interruption) however caused
							 | 
						||
| 
								 | 
							
								// and on any theory of liability, whether in contract, strict liability,
							 | 
						||
| 
								 | 
							
								// or tort (including negligence or otherwise) arising in any way out of
							 | 
						||
| 
								 | 
							
								// the use of this software, even if advised of the possibility of such damage.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//M*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef OPENCV_TRACKING_HPP
							 | 
						||
| 
								 | 
							
								#define OPENCV_TRACKING_HPP
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "opencv2/core.hpp"
							 | 
						||
| 
								 | 
							
								#include "opencv2/imgproc.hpp"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace cv
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//! @addtogroup video_track
							 | 
						||
| 
								 | 
							
								//! @{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								enum { OPTFLOW_USE_INITIAL_FLOW     = 4,
							 | 
						||
| 
								 | 
							
								       OPTFLOW_LK_GET_MIN_EIGENVALS = 8,
							 | 
						||
| 
								 | 
							
								       OPTFLOW_FARNEBACK_GAUSSIAN   = 256
							 | 
						||
| 
								 | 
							
								     };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Finds an object center, size, and orientation.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@param probImage Back projection of the object histogram. See calcBackProject.
							 | 
						||
| 
								 | 
							
								@param window Initial search window.
							 | 
						||
| 
								 | 
							
								@param criteria Stop criteria for the underlying meanShift.
							 | 
						||
| 
								 | 
							
								returns
							 | 
						||
| 
								 | 
							
								(in old interfaces) Number of iterations CAMSHIFT took to converge
							 | 
						||
| 
								 | 
							
								The function implements the CAMSHIFT object tracking algorithm @cite Bradski98 . First, it finds an
							 | 
						||
| 
								 | 
							
								object center using meanShift and then adjusts the window size and finds the optimal rotation. The
							 | 
						||
| 
								 | 
							
								function returns the rotated rectangle structure that includes the object position, size, and
							 | 
						||
| 
								 | 
							
								orientation. The next position of the search window can be obtained with RotatedRect::boundingRect()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								See the OpenCV sample camshiftdemo.c that tracks colored objects.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@note
							 | 
						||
| 
								 | 
							
								-   (Python) A sample explaining the camshift tracking algorithm can be found at
							 | 
						||
| 
								 | 
							
								    opencv_source_code/samples/python/camshift.py
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								CV_EXPORTS_W RotatedRect CamShift( InputArray probImage, CV_IN_OUT Rect& window,
							 | 
						||
| 
								 | 
							
								                                   TermCriteria criteria );
							 | 
						||
| 
								 | 
							
								/** @example samples/cpp/camshiftdemo.cpp
							 | 
						||
| 
								 | 
							
								An example using the mean-shift tracking algorithm
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Finds an object on a back projection image.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@param probImage Back projection of the object histogram. See calcBackProject for details.
							 | 
						||
| 
								 | 
							
								@param window Initial search window.
							 | 
						||
| 
								 | 
							
								@param criteria Stop criteria for the iterative search algorithm.
							 | 
						||
| 
								 | 
							
								returns
							 | 
						||
| 
								 | 
							
								:   Number of iterations CAMSHIFT took to converge.
							 | 
						||
| 
								 | 
							
								The function implements the iterative object search algorithm. It takes the input back projection of
							 | 
						||
| 
								 | 
							
								an object and the initial position. The mass center in window of the back projection image is
							 | 
						||
| 
								 | 
							
								computed and the search window center shifts to the mass center. The procedure is repeated until the
							 | 
						||
| 
								 | 
							
								specified number of iterations criteria.maxCount is done or until the window center shifts by less
							 | 
						||
| 
								 | 
							
								than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search
							 | 
						||
| 
								 | 
							
								window size or orientation do not change during the search. You can simply pass the output of
							 | 
						||
| 
								 | 
							
								calcBackProject to this function. But better results can be obtained if you pre-filter the back
							 | 
						||
| 
								 | 
							
								projection and remove the noise. For example, you can do this by retrieving connected components
							 | 
						||
| 
								 | 
							
								with findContours , throwing away contours with small area ( contourArea ), and rendering the
							 | 
						||
| 
								 | 
							
								remaining contours with drawContours.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								CV_EXPORTS_W int meanShift( InputArray probImage, CV_IN_OUT Rect& window, TermCriteria criteria );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@param img 8-bit input image.
							 | 
						||
| 
								 | 
							
								@param pyramid output pyramid.
							 | 
						||
| 
								 | 
							
								@param winSize window size of optical flow algorithm. Must be not less than winSize argument of
							 | 
						||
| 
								 | 
							
								calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
							 | 
						||
| 
								 | 
							
								@param maxLevel 0-based maximal pyramid level number.
							 | 
						||
| 
								 | 
							
								@param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
							 | 
						||
| 
								 | 
							
								constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
							 | 
						||
| 
								 | 
							
								@param pyrBorder the border mode for pyramid layers.
							 | 
						||
| 
								 | 
							
								@param derivBorder the border mode for gradients.
							 | 
						||
| 
								 | 
							
								@param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
							 | 
						||
| 
								 | 
							
								to force data copying.
							 | 
						||
| 
								 | 
							
								@return number of levels in constructed pyramid. Can be less than maxLevel.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								CV_EXPORTS_W int buildOpticalFlowPyramid( InputArray img, OutputArrayOfArrays pyramid,
							 | 
						||
| 
								 | 
							
								                                          Size winSize, int maxLevel, bool withDerivatives = true,
							 | 
						||
| 
								 | 
							
								                                          int pyrBorder = BORDER_REFLECT_101,
							 | 
						||
| 
								 | 
							
								                                          int derivBorder = BORDER_CONSTANT,
							 | 
						||
| 
								 | 
							
								                                          bool tryReuseInputImage = true );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @example samples/cpp/lkdemo.cpp
							 | 
						||
| 
								 | 
							
								An example using the Lucas-Kanade optical flow algorithm
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
							 | 
						||
| 
								 | 
							
								pyramids.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
							 | 
						||
| 
								 | 
							
								@param nextImg second input image or pyramid of the same size and the same type as prevImg.
							 | 
						||
| 
								 | 
							
								@param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
							 | 
						||
| 
								 | 
							
								single-precision floating-point numbers.
							 | 
						||
| 
								 | 
							
								@param nextPts output vector of 2D points (with single-precision floating-point coordinates)
							 | 
						||
| 
								 | 
							
								containing the calculated new positions of input features in the second image; when
							 | 
						||
| 
								 | 
							
								OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
							 | 
						||
| 
								 | 
							
								@param status output status vector (of unsigned chars); each element of the vector is set to 1 if
							 | 
						||
| 
								 | 
							
								the flow for the corresponding features has been found, otherwise, it is set to 0.
							 | 
						||
| 
								 | 
							
								@param err output vector of errors; each element of the vector is set to an error for the
							 | 
						||
| 
								 | 
							
								corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
							 | 
						||
| 
								 | 
							
								found then the error is not defined (use the status parameter to find such cases).
							 | 
						||
| 
								 | 
							
								@param winSize size of the search window at each pyramid level.
							 | 
						||
| 
								 | 
							
								@param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
							 | 
						||
| 
								 | 
							
								level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
							 | 
						||
| 
								 | 
							
								algorithm will use as many levels as pyramids have but no more than maxLevel.
							 | 
						||
| 
								 | 
							
								@param criteria parameter, specifying the termination criteria of the iterative search algorithm
							 | 
						||
| 
								 | 
							
								(after the specified maximum number of iterations criteria.maxCount or when the search window
							 | 
						||
| 
								 | 
							
								moves by less than criteria.epsilon.
							 | 
						||
| 
								 | 
							
								@param flags operation flags:
							 | 
						||
| 
								 | 
							
								 -   **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
							 | 
						||
| 
								 | 
							
								     not set, then prevPts is copied to nextPts and is considered the initial estimate.
							 | 
						||
| 
								 | 
							
								 -   **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
							 | 
						||
| 
								 | 
							
								     minEigThreshold description); if the flag is not set, then L1 distance between patches
							 | 
						||
| 
								 | 
							
								     around the original and a moved point, divided by number of pixels in a window, is used as a
							 | 
						||
| 
								 | 
							
								     error measure.
							 | 
						||
| 
								 | 
							
								@param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
							 | 
						||
| 
								 | 
							
								optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
							 | 
						||
| 
								 | 
							
								by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
							 | 
						||
| 
								 | 
							
								feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
							 | 
						||
| 
								 | 
							
								performance boost.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
							 | 
						||
| 
								 | 
							
								@cite Bouguet00 . The function is parallelized with the TBB library.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@note
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								-   An example using the Lucas-Kanade optical flow algorithm can be found at
							 | 
						||
| 
								 | 
							
								    opencv_source_code/samples/cpp/lkdemo.cpp
							 | 
						||
| 
								 | 
							
								-   (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
							 | 
						||
| 
								 | 
							
								    opencv_source_code/samples/python/lk_track.py
							 | 
						||
| 
								 | 
							
								-   (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
							 | 
						||
| 
								 | 
							
								    opencv_source_code/samples/python/lk_homography.py
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
							 | 
						||
| 
								 | 
							
								                                        InputArray prevPts, InputOutputArray nextPts,
							 | 
						||
| 
								 | 
							
								                                        OutputArray status, OutputArray err,
							 | 
						||
| 
								 | 
							
								                                        Size winSize = Size(21,21), int maxLevel = 3,
							 | 
						||
| 
								 | 
							
								                                        TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
							 | 
						||
| 
								 | 
							
								                                        int flags = 0, double minEigThreshold = 1e-4 );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Computes a dense optical flow using the Gunnar Farneback's algorithm.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@param prev first 8-bit single-channel input image.
							 | 
						||
| 
								 | 
							
								@param next second input image of the same size and the same type as prev.
							 | 
						||
| 
								 | 
							
								@param flow computed flow image that has the same size as prev and type CV_32FC2.
							 | 
						||
| 
								 | 
							
								@param pyr_scale parameter, specifying the image scale (\<1) to build pyramids for each image;
							 | 
						||
| 
								 | 
							
								pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
							 | 
						||
| 
								 | 
							
								one.
							 | 
						||
| 
								 | 
							
								@param levels number of pyramid layers including the initial image; levels=1 means that no extra
							 | 
						||
| 
								 | 
							
								layers are created and only the original images are used.
							 | 
						||
| 
								 | 
							
								@param winsize averaging window size; larger values increase the algorithm robustness to image
							 | 
						||
| 
								 | 
							
								noise and give more chances for fast motion detection, but yield more blurred motion field.
							 | 
						||
| 
								 | 
							
								@param iterations number of iterations the algorithm does at each pyramid level.
							 | 
						||
| 
								 | 
							
								@param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel;
							 | 
						||
| 
								 | 
							
								larger values mean that the image will be approximated with smoother surfaces, yielding more
							 | 
						||
| 
								 | 
							
								robust algorithm and more blurred motion field, typically poly_n =5 or 7.
							 | 
						||
| 
								 | 
							
								@param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a
							 | 
						||
| 
								 | 
							
								basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a
							 | 
						||
| 
								 | 
							
								good value would be poly_sigma=1.5.
							 | 
						||
| 
								 | 
							
								@param flags operation flags that can be a combination of the following:
							 | 
						||
| 
								 | 
							
								 -   **OPTFLOW_USE_INITIAL_FLOW** uses the input flow as an initial flow approximation.
							 | 
						||
| 
								 | 
							
								 -   **OPTFLOW_FARNEBACK_GAUSSIAN** uses the Gaussian \f$\texttt{winsize}\times\texttt{winsize}\f$
							 | 
						||
| 
								 | 
							
								     filter instead of a box filter of the same size for optical flow estimation; usually, this
							 | 
						||
| 
								 | 
							
								     option gives z more accurate flow than with a box filter, at the cost of lower speed;
							 | 
						||
| 
								 | 
							
								     normally, winsize for a Gaussian window should be set to a larger value to achieve the same
							 | 
						||
| 
								 | 
							
								     level of robustness.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The function finds an optical flow for each prev pixel using the @cite Farneback2003 algorithm so that
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\f[\texttt{prev} (y,x)  \sim \texttt{next} ( y + \texttt{flow} (y,x)[1],  x + \texttt{flow} (y,x)[0])\f]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@note
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								-   An example using the optical flow algorithm described by Gunnar Farneback can be found at
							 | 
						||
| 
								 | 
							
								    opencv_source_code/samples/cpp/fback.cpp
							 | 
						||
| 
								 | 
							
								-   (Python) An example using the optical flow algorithm described by Gunnar Farneback can be
							 | 
						||
| 
								 | 
							
								    found at opencv_source_code/samples/python/opt_flow.py
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next, InputOutputArray flow,
							 | 
						||
| 
								 | 
							
								                                            double pyr_scale, int levels, int winsize,
							 | 
						||
| 
								 | 
							
								                                            int iterations, int poly_n, double poly_sigma,
							 | 
						||
| 
								 | 
							
								                                            int flags );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Computes an optimal affine transformation between two 2D point sets.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@param src First input 2D point set stored in std::vector or Mat, or an image stored in Mat.
							 | 
						||
| 
								 | 
							
								@param dst Second input 2D point set of the same size and the same type as A, or another image.
							 | 
						||
| 
								 | 
							
								@param fullAffine If true, the function finds an optimal affine transformation with no additional
							 | 
						||
| 
								 | 
							
								restrictions (6 degrees of freedom). Otherwise, the class of transformations to choose from is
							 | 
						||
| 
								 | 
							
								limited to combinations of translation, rotation, and uniform scaling (4 degrees of freedom).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The function finds an optimal affine transform *[A|b]* (a 2 x 3 floating-point matrix) that
							 | 
						||
| 
								 | 
							
								approximates best the affine transformation between:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								*   Two point sets
							 | 
						||
| 
								 | 
							
								*   Two raster images. In this case, the function first finds some features in the src image and
							 | 
						||
| 
								 | 
							
								    finds the corresponding features in dst image. After that, the problem is reduced to the first
							 | 
						||
| 
								 | 
							
								    case.
							 | 
						||
| 
								 | 
							
								In case of point sets, the problem is formulated as follows: you need to find a 2x2 matrix *A* and
							 | 
						||
| 
								 | 
							
								2x1 vector *b* so that:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\f[[A^*|b^*] = arg  \min _{[A|b]}  \sum _i  \| \texttt{dst}[i] - A { \texttt{src}[i]}^T - b  \| ^2\f]
							 | 
						||
| 
								 | 
							
								where src[i] and dst[i] are the i-th points in src and dst, respectively
							 | 
						||
| 
								 | 
							
								\f$[A|b]\f$ can be either arbitrary (when fullAffine=true ) or have a form of
							 | 
						||
| 
								 | 
							
								\f[\begin{bmatrix} a_{11} & a_{12} & b_1  \\ -a_{12} & a_{11} & b_2  \end{bmatrix}\f]
							 | 
						||
| 
								 | 
							
								when fullAffine=false.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@deprecated Use cv::estimateAffine2D, cv::estimateAffinePartial2D instead. If you are using this function
							 | 
						||
| 
								 | 
							
								with images, extract points using cv::calcOpticalFlowPyrLK and then use the estimation functions.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@sa
							 | 
						||
| 
								 | 
							
								estimateAffine2D, estimateAffinePartial2D, getAffineTransform, getPerspectiveTransform, findHomography
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								CV_DEPRECATED CV_EXPORTS Mat estimateRigidTransform( InputArray src, InputArray dst, bool fullAffine );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								enum
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    MOTION_TRANSLATION = 0,
							 | 
						||
| 
								 | 
							
								    MOTION_EUCLIDEAN   = 1,
							 | 
						||
| 
								 | 
							
								    MOTION_AFFINE      = 2,
							 | 
						||
| 
								 | 
							
								    MOTION_HOMOGRAPHY  = 3
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Computes the Enhanced Correlation Coefficient value between two images @cite EP08 .
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@param templateImage single-channel template image; CV_8U or CV_32F array.
							 | 
						||
| 
								 | 
							
								@param inputImage single-channel input image to be warped to provide an image similar to
							 | 
						||
| 
								 | 
							
								 templateImage, same type as templateImage.
							 | 
						||
| 
								 | 
							
								@param inputMask An optional mask to indicate valid values of inputImage.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@sa
							 | 
						||
| 
								 | 
							
								findTransformECC
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								CV_EXPORTS_W double computeECC(InputArray templateImage, InputArray inputImage, InputArray inputMask = noArray());
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @example samples/cpp/image_alignment.cpp
							 | 
						||
| 
								 | 
							
								An example using the image alignment ECC algorithm
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Finds the geometric transform (warp) between two images in terms of the ECC criterion @cite EP08 .
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@param templateImage single-channel template image; CV_8U or CV_32F array.
							 | 
						||
| 
								 | 
							
								@param inputImage single-channel input image which should be warped with the final warpMatrix in
							 | 
						||
| 
								 | 
							
								order to provide an image similar to templateImage, same type as templateImage.
							 | 
						||
| 
								 | 
							
								@param warpMatrix floating-point \f$2\times 3\f$ or \f$3\times 3\f$ mapping matrix (warp).
							 | 
						||
| 
								 | 
							
								@param motionType parameter, specifying the type of motion:
							 | 
						||
| 
								 | 
							
								 -   **MOTION_TRANSLATION** sets a translational motion model; warpMatrix is \f$2\times 3\f$ with
							 | 
						||
| 
								 | 
							
								     the first \f$2\times 2\f$ part being the unity matrix and the rest two parameters being
							 | 
						||
| 
								 | 
							
								     estimated.
							 | 
						||
| 
								 | 
							
								 -   **MOTION_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three
							 | 
						||
| 
								 | 
							
								     parameters are estimated; warpMatrix is \f$2\times 3\f$.
							 | 
						||
| 
								 | 
							
								 -   **MOTION_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated;
							 | 
						||
| 
								 | 
							
								     warpMatrix is \f$2\times 3\f$.
							 | 
						||
| 
								 | 
							
								 -   **MOTION_HOMOGRAPHY** sets a homography as a motion model; eight parameters are
							 | 
						||
| 
								 | 
							
								     estimated;\`warpMatrix\` is \f$3\times 3\f$.
							 | 
						||
| 
								 | 
							
								@param criteria parameter, specifying the termination criteria of the ECC algorithm;
							 | 
						||
| 
								 | 
							
								criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
							 | 
						||
| 
								 | 
							
								iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
							 | 
						||
| 
								 | 
							
								Default values are shown in the declaration above.
							 | 
						||
| 
								 | 
							
								@param inputMask An optional mask to indicate valid values of inputImage.
							 | 
						||
| 
								 | 
							
								@param gaussFiltSize An optional value indicating size of gaussian blur filter; (DEFAULT: 5)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
							 | 
						||
| 
								 | 
							
								(@cite EP08), that is
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\f[\texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\f]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								where
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\f[\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\f]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								(the equation holds with homogeneous coordinates for homography). It returns the final enhanced
							 | 
						||
| 
								 | 
							
								correlation coefficient, that is the correlation coefficient between the template image and the
							 | 
						||
| 
								 | 
							
								final warped input image. When a \f$3\times 3\f$ matrix is given with motionType =0, 1 or 2, the third
							 | 
						||
| 
								 | 
							
								row is ignored.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
							 | 
						||
| 
								 | 
							
								area-based alignment that builds on intensity similarities. In essence, the function updates the
							 | 
						||
| 
								 | 
							
								initial transformation that roughly aligns the images. If this information is missing, the identity
							 | 
						||
| 
								 | 
							
								warp (unity matrix) is used as an initialization. Note that if images undergo strong
							 | 
						||
| 
								 | 
							
								displacements/rotations, an initial transformation that roughly aligns the images is necessary
							 | 
						||
| 
								 | 
							
								(e.g., a simple euclidean/similarity transform that allows for the images showing the same image
							 | 
						||
| 
								 | 
							
								content approximately). Use inverse warping in the second image to take an image close to the first
							 | 
						||
| 
								 | 
							
								one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV
							 | 
						||
| 
								 | 
							
								sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws
							 | 
						||
| 
								 | 
							
								an exception if algorithm does not converges.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@sa
							 | 
						||
| 
								 | 
							
								computeECC, estimateAffine2D, estimateAffinePartial2D, findHomography
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								CV_EXPORTS_W double findTransformECC( InputArray templateImage, InputArray inputImage,
							 | 
						||
| 
								 | 
							
								                                      InputOutputArray warpMatrix, int motionType,
							 | 
						||
| 
								 | 
							
								                                      TermCriteria criteria,
							 | 
						||
| 
								 | 
							
								                                      InputArray inputMask, int gaussFiltSize);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @overload */
							 | 
						||
| 
								 | 
							
								CV_EXPORTS_W
							 | 
						||
| 
								 | 
							
								double findTransformECC(InputArray templateImage, InputArray inputImage,
							 | 
						||
| 
								 | 
							
								    InputOutputArray warpMatrix, int motionType = MOTION_AFFINE,
							 | 
						||
| 
								 | 
							
								    TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001),
							 | 
						||
| 
								 | 
							
								    InputArray inputMask = noArray());
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @example samples/cpp/kalman.cpp
							 | 
						||
| 
								 | 
							
								An example using the standard Kalman filter
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Kalman filter class.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The class implements a standard Kalman filter <http://en.wikipedia.org/wiki/Kalman_filter>,
							 | 
						||
| 
								 | 
							
								@cite Welch95 . However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get
							 | 
						||
| 
								 | 
							
								an extended Kalman filter functionality.
							 | 
						||
| 
								 | 
							
								@note In C API when CvKalman\* kalmanFilter structure is not needed anymore, it should be released
							 | 
						||
| 
								 | 
							
								with cvReleaseKalman(&kalmanFilter)
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								class CV_EXPORTS_W KalmanFilter
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    CV_WRAP KalmanFilter();
							 | 
						||
| 
								 | 
							
								    /** @overload
							 | 
						||
| 
								 | 
							
								    @param dynamParams Dimensionality of the state.
							 | 
						||
| 
								 | 
							
								    @param measureParams Dimensionality of the measurement.
							 | 
						||
| 
								 | 
							
								    @param controlParams Dimensionality of the control vector.
							 | 
						||
| 
								 | 
							
								    @param type Type of the created matrices that should be CV_32F or CV_64F.
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP KalmanFilter( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Re-initializes Kalman filter. The previous content is destroyed.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @param dynamParams Dimensionality of the state.
							 | 
						||
| 
								 | 
							
								    @param measureParams Dimensionality of the measurement.
							 | 
						||
| 
								 | 
							
								    @param controlParams Dimensionality of the control vector.
							 | 
						||
| 
								 | 
							
								    @param type Type of the created matrices that should be CV_32F or CV_64F.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    void init( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Computes a predicted state.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @param control The optional input control
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP const Mat& predict( const Mat& control = Mat() );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Updates the predicted state from the measurement.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @param measurement The measured system parameters
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP const Mat& correct( const Mat& measurement );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    CV_PROP_RW Mat statePre;           //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
							 | 
						||
| 
								 | 
							
								    CV_PROP_RW Mat statePost;          //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
							 | 
						||
| 
								 | 
							
								    CV_PROP_RW Mat transitionMatrix;   //!< state transition matrix (A)
							 | 
						||
| 
								 | 
							
								    CV_PROP_RW Mat controlMatrix;      //!< control matrix (B) (not used if there is no control)
							 | 
						||
| 
								 | 
							
								    CV_PROP_RW Mat measurementMatrix;  //!< measurement matrix (H)
							 | 
						||
| 
								 | 
							
								    CV_PROP_RW Mat processNoiseCov;    //!< process noise covariance matrix (Q)
							 | 
						||
| 
								 | 
							
								    CV_PROP_RW Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
							 | 
						||
| 
								 | 
							
								    CV_PROP_RW Mat errorCovPre;        //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
							 | 
						||
| 
								 | 
							
								    CV_PROP_RW Mat gain;               //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
							 | 
						||
| 
								 | 
							
								    CV_PROP_RW Mat errorCovPost;       //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // temporary matrices
							 | 
						||
| 
								 | 
							
								    Mat temp1;
							 | 
						||
| 
								 | 
							
								    Mat temp2;
							 | 
						||
| 
								 | 
							
								    Mat temp3;
							 | 
						||
| 
								 | 
							
								    Mat temp4;
							 | 
						||
| 
								 | 
							
								    Mat temp5;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Read a .flo file
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 @param path Path to the file to be loaded
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 The function readOpticalFlow loads a flow field from a file and returns it as a single matrix.
							 | 
						||
| 
								 | 
							
								 Resulting Mat has a type CV_32FC2 - floating-point, 2-channel. First channel corresponds to the
							 | 
						||
| 
								 | 
							
								 flow in the horizontal direction (u), second - vertical (v).
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								CV_EXPORTS_W Mat readOpticalFlow( const String& path );
							 | 
						||
| 
								 | 
							
								/** @brief Write a .flo to disk
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 @param path Path to the file to be written
							 | 
						||
| 
								 | 
							
								 @param flow Flow field to be stored
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 The function stores a flow field in a file, returns true on success, false otherwise.
							 | 
						||
| 
								 | 
							
								 The flow field must be a 2-channel, floating-point matrix (CV_32FC2). First channel corresponds
							 | 
						||
| 
								 | 
							
								 to the flow in the horizontal direction (u), second - vertical (v).
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								CV_EXPORTS_W bool writeOpticalFlow( const String& path, InputArray flow );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								   Base class for dense optical flow algorithms
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								class CV_EXPORTS_W DenseOpticalFlow : public Algorithm
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    /** @brief Calculates an optical flow.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @param I0 first 8-bit single-channel input image.
							 | 
						||
| 
								 | 
							
								    @param I1 second input image of the same size and the same type as prev.
							 | 
						||
| 
								 | 
							
								    @param flow computed flow image that has the same size as prev and type CV_32FC2.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void calc( InputArray I0, InputArray I1, InputOutputArray flow ) = 0;
							 | 
						||
| 
								 | 
							
								    /** @brief Releases all inner buffers.
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void collectGarbage() = 0;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Base interface for sparse optical flow algorithms.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								class CV_EXPORTS_W SparseOpticalFlow : public Algorithm
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    /** @brief Calculates a sparse optical flow.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @param prevImg First input image.
							 | 
						||
| 
								 | 
							
								    @param nextImg Second input image of the same size and the same type as prevImg.
							 | 
						||
| 
								 | 
							
								    @param prevPts Vector of 2D points for which the flow needs to be found.
							 | 
						||
| 
								 | 
							
								    @param nextPts Output vector of 2D points containing the calculated new positions of input features in the second image.
							 | 
						||
| 
								 | 
							
								    @param status Output status vector. Each element of the vector is set to 1 if the
							 | 
						||
| 
								 | 
							
								                  flow for the corresponding features has been found. Otherwise, it is set to 0.
							 | 
						||
| 
								 | 
							
								    @param err Optional output vector that contains error response for each point (inverse confidence).
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void calc(InputArray prevImg, InputArray nextImg,
							 | 
						||
| 
								 | 
							
								                      InputArray prevPts, InputOutputArray nextPts,
							 | 
						||
| 
								 | 
							
								                      OutputArray status,
							 | 
						||
| 
								 | 
							
								                      OutputArray err = cv::noArray()) = 0;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Class computing a dense optical flow using the Gunnar Farneback's algorithm.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								class CV_EXPORTS_W FarnebackOpticalFlow : public DenseOpticalFlow
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getNumLevels() const = 0;
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setNumLevels(int numLevels) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual double getPyrScale() const = 0;
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setPyrScale(double pyrScale) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual bool getFastPyramids() const = 0;
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setFastPyramids(bool fastPyramids) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getWinSize() const = 0;
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setWinSize(int winSize) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getNumIters() const = 0;
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setNumIters(int numIters) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getPolyN() const = 0;
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setPolyN(int polyN) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual double getPolySigma() const = 0;
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setPolySigma(double polySigma) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getFlags() const = 0;
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setFlags(int flags) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    CV_WRAP static Ptr<FarnebackOpticalFlow> create(
							 | 
						||
| 
								 | 
							
								            int numLevels = 5,
							 | 
						||
| 
								 | 
							
								            double pyrScale = 0.5,
							 | 
						||
| 
								 | 
							
								            bool fastPyramids = false,
							 | 
						||
| 
								 | 
							
								            int winSize = 13,
							 | 
						||
| 
								 | 
							
								            int numIters = 10,
							 | 
						||
| 
								 | 
							
								            int polyN = 5,
							 | 
						||
| 
								 | 
							
								            double polySigma = 1.1,
							 | 
						||
| 
								 | 
							
								            int flags = 0);
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Variational optical flow refinement
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								This class implements variational refinement of the input flow field, i.e.
							 | 
						||
| 
								 | 
							
								it uses input flow to initialize the minimization of the following functional:
							 | 
						||
| 
								 | 
							
								\f$E(U) = \int_{\Omega} \delta \Psi(E_I) + \gamma \Psi(E_G) + \alpha \Psi(E_S) \f$,
							 | 
						||
| 
								 | 
							
								where \f$E_I,E_G,E_S\f$ are color constancy, gradient constancy and smoothness terms
							 | 
						||
| 
								 | 
							
								respectively. \f$\Psi(s^2)=\sqrt{s^2+\epsilon^2}\f$ is a robust penalizer to limit the
							 | 
						||
| 
								 | 
							
								influence of outliers. A complete formulation and a description of the minimization
							 | 
						||
| 
								 | 
							
								procedure can be found in @cite Brox2004
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								class CV_EXPORTS_W VariationalRefinement : public DenseOpticalFlow
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    /** @brief @ref calc function overload to handle separate horizontal (u) and vertical (v) flow components
							 | 
						||
| 
								 | 
							
								    (to avoid extra splits/merges) */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void calcUV(InputArray I0, InputArray I1, InputOutputArray flow_u, InputOutputArray flow_v) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Number of outer (fixed-point) iterations in the minimization procedure.
							 | 
						||
| 
								 | 
							
								    @see setFixedPointIterations */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getFixedPointIterations() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @copybrief getFixedPointIterations @see getFixedPointIterations */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setFixedPointIterations(int val) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Number of inner successive over-relaxation (SOR) iterations
							 | 
						||
| 
								 | 
							
								        in the minimization procedure to solve the respective linear system.
							 | 
						||
| 
								 | 
							
								    @see setSorIterations */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getSorIterations() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @copybrief getSorIterations @see getSorIterations */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setSorIterations(int val) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Relaxation factor in SOR
							 | 
						||
| 
								 | 
							
								    @see setOmega */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual float getOmega() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @copybrief getOmega @see getOmega */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setOmega(float val) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Weight of the smoothness term
							 | 
						||
| 
								 | 
							
								    @see setAlpha */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual float getAlpha() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @copybrief getAlpha @see getAlpha */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setAlpha(float val) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Weight of the color constancy term
							 | 
						||
| 
								 | 
							
								    @see setDelta */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual float getDelta() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @copybrief getDelta @see getDelta */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setDelta(float val) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Weight of the gradient constancy term
							 | 
						||
| 
								 | 
							
								    @see setGamma */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual float getGamma() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @copybrief getGamma @see getGamma */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setGamma(float val) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Creates an instance of VariationalRefinement
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP static Ptr<VariationalRefinement> create();
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief DIS optical flow algorithm.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								This class implements the Dense Inverse Search (DIS) optical flow algorithm. More
							 | 
						||
| 
								 | 
							
								details about the algorithm can be found at @cite Kroeger2016 . Includes three presets with preselected
							 | 
						||
| 
								 | 
							
								parameters to provide reasonable trade-off between speed and quality. However, even the slowest preset is
							 | 
						||
| 
								 | 
							
								still relatively fast, use DeepFlow if you need better quality and don't care about speed.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								This implementation includes several additional features compared to the algorithm described in the paper,
							 | 
						||
| 
								 | 
							
								including spatial propagation of flow vectors (@ref getUseSpatialPropagation), as well as an option to
							 | 
						||
| 
								 | 
							
								utilize an initial flow approximation passed to @ref calc (which is, essentially, temporal propagation,
							 | 
						||
| 
								 | 
							
								if the previous frame's flow field is passed).
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								class CV_EXPORTS_W DISOpticalFlow : public DenseOpticalFlow
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    enum
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        PRESET_ULTRAFAST = 0,
							 | 
						||
| 
								 | 
							
								        PRESET_FAST = 1,
							 | 
						||
| 
								 | 
							
								        PRESET_MEDIUM = 2
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Finest level of the Gaussian pyramid on which the flow is computed (zero level
							 | 
						||
| 
								 | 
							
								        corresponds to the original image resolution). The final flow is obtained by bilinear upscaling.
							 | 
						||
| 
								 | 
							
								        @see setFinestScale */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getFinestScale() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @copybrief getFinestScale @see getFinestScale */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setFinestScale(int val) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Size of an image patch for matching (in pixels). Normally, default 8x8 patches work well
							 | 
						||
| 
								 | 
							
								        enough in most cases.
							 | 
						||
| 
								 | 
							
								        @see setPatchSize */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getPatchSize() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @copybrief getPatchSize @see getPatchSize */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setPatchSize(int val) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Stride between neighbor patches. Must be less than patch size. Lower values correspond
							 | 
						||
| 
								 | 
							
								        to higher flow quality.
							 | 
						||
| 
								 | 
							
								        @see setPatchStride */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getPatchStride() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @copybrief getPatchStride @see getPatchStride */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setPatchStride(int val) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Maximum number of gradient descent iterations in the patch inverse search stage. Higher values
							 | 
						||
| 
								 | 
							
								        may improve quality in some cases.
							 | 
						||
| 
								 | 
							
								        @see setGradientDescentIterations */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getGradientDescentIterations() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @copybrief getGradientDescentIterations @see getGradientDescentIterations */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setGradientDescentIterations(int val) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Number of fixed point iterations of variational refinement per scale. Set to zero to
							 | 
						||
| 
								 | 
							
								        disable variational refinement completely. Higher values will typically result in more smooth and
							 | 
						||
| 
								 | 
							
								        high-quality flow.
							 | 
						||
| 
								 | 
							
								    @see setGradientDescentIterations */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getVariationalRefinementIterations() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @copybrief getGradientDescentIterations @see getGradientDescentIterations */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setVariationalRefinementIterations(int val) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Weight of the smoothness term
							 | 
						||
| 
								 | 
							
								    @see setVariationalRefinementAlpha */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual float getVariationalRefinementAlpha() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @copybrief getVariationalRefinementAlpha @see getVariationalRefinementAlpha */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setVariationalRefinementAlpha(float val) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Weight of the color constancy term
							 | 
						||
| 
								 | 
							
								    @see setVariationalRefinementDelta */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual float getVariationalRefinementDelta() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @copybrief getVariationalRefinementDelta @see getVariationalRefinementDelta */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setVariationalRefinementDelta(float val) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Weight of the gradient constancy term
							 | 
						||
| 
								 | 
							
								    @see setVariationalRefinementGamma */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual float getVariationalRefinementGamma() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @copybrief getVariationalRefinementGamma @see getVariationalRefinementGamma */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setVariationalRefinementGamma(float val) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Whether to use mean-normalization of patches when computing patch distance. It is turned on
							 | 
						||
| 
								 | 
							
								        by default as it typically provides a noticeable quality boost because of increased robustness to
							 | 
						||
| 
								 | 
							
								        illumination variations. Turn it off if you are certain that your sequence doesn't contain any changes
							 | 
						||
| 
								 | 
							
								        in illumination.
							 | 
						||
| 
								 | 
							
								    @see setUseMeanNormalization */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual bool getUseMeanNormalization() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @copybrief getUseMeanNormalization @see getUseMeanNormalization */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setUseMeanNormalization(bool val) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Whether to use spatial propagation of good optical flow vectors. This option is turned on by
							 | 
						||
| 
								 | 
							
								        default, as it tends to work better on average and can sometimes help recover from major errors
							 | 
						||
| 
								 | 
							
								        introduced by the coarse-to-fine scheme employed by the DIS optical flow algorithm. Turning this
							 | 
						||
| 
								 | 
							
								        option off can make the output flow field a bit smoother, however.
							 | 
						||
| 
								 | 
							
								    @see setUseSpatialPropagation */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual bool getUseSpatialPropagation() const = 0;
							 | 
						||
| 
								 | 
							
								    /** @copybrief getUseSpatialPropagation @see getUseSpatialPropagation */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setUseSpatialPropagation(bool val) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Creates an instance of DISOpticalFlow
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @param preset one of PRESET_ULTRAFAST, PRESET_FAST and PRESET_MEDIUM
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP static Ptr<DISOpticalFlow> create(int preset = DISOpticalFlow::PRESET_FAST);
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Class used for calculating a sparse optical flow.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The class can calculate an optical flow for a sparse feature set using the
							 | 
						||
| 
								 | 
							
								iterative Lucas-Kanade method with pyramids.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@sa calcOpticalFlowPyrLK
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								class CV_EXPORTS_W SparsePyrLKOpticalFlow : public SparseOpticalFlow
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual Size getWinSize() const = 0;
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setWinSize(Size winSize) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getMaxLevel() const = 0;
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setMaxLevel(int maxLevel) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setTermCriteria(TermCriteria& crit) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual int getFlags() const = 0;
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setFlags(int flags) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual double getMinEigThreshold() const = 0;
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual void setMinEigThreshold(double minEigThreshold) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    CV_WRAP static Ptr<SparsePyrLKOpticalFlow> create(
							 | 
						||
| 
								 | 
							
								            Size winSize = Size(21, 21),
							 | 
						||
| 
								 | 
							
								            int maxLevel = 3, TermCriteria crit =
							 | 
						||
| 
								 | 
							
								            TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
							 | 
						||
| 
								 | 
							
								            int flags = 0,
							 | 
						||
| 
								 | 
							
								            double minEigThreshold = 1e-4);
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief Base abstract class for the long-term tracker
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								class CV_EXPORTS_W Tracker
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								protected:
							 | 
						||
| 
								 | 
							
								    Tracker();
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    virtual ~Tracker();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Initialize the tracker with a known bounding box that surrounded the target
							 | 
						||
| 
								 | 
							
								    @param image The initial frame
							 | 
						||
| 
								 | 
							
								    @param boundingBox The initial bounding box
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual
							 | 
						||
| 
								 | 
							
								    void init(InputArray image, const Rect& boundingBox) = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Update the tracker, find the new most likely bounding box for the target
							 | 
						||
| 
								 | 
							
								    @param image The current frame
							 | 
						||
| 
								 | 
							
								    @param boundingBox The bounding box that represent the new target location, if true was returned, not
							 | 
						||
| 
								 | 
							
								    modified otherwise
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @return True means that target was located and false means that tracker cannot locate target in
							 | 
						||
| 
								 | 
							
								    current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
							 | 
						||
| 
								 | 
							
								    missing from the frame (say, out of sight)
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual
							 | 
						||
| 
								 | 
							
								    bool update(InputArray image, CV_OUT Rect& boundingBox) = 0;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief The MIL algorithm trains a classifier in an online manner to separate the object from the
							 | 
						||
| 
								 | 
							
								background.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Multiple Instance Learning avoids the drift problem for a robust tracking. The implementation is
							 | 
						||
| 
								 | 
							
								based on @cite MIL .
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Original code can be found here <http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml>
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								class CV_EXPORTS_W TrackerMIL : public Tracker
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								protected:
							 | 
						||
| 
								 | 
							
								    TrackerMIL();  // use ::create()
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    virtual ~TrackerMIL() CV_OVERRIDE;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    struct CV_EXPORTS_W_SIMPLE Params
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        CV_WRAP Params();
							 | 
						||
| 
								 | 
							
								        //parameters for sampler
							 | 
						||
| 
								 | 
							
								        CV_PROP_RW float samplerInitInRadius;  //!< radius for gathering positive instances during init
							 | 
						||
| 
								 | 
							
								        CV_PROP_RW int samplerInitMaxNegNum;  //!< # negative samples to use during init
							 | 
						||
| 
								 | 
							
								        CV_PROP_RW float samplerSearchWinSize;  //!< size of search window
							 | 
						||
| 
								 | 
							
								        CV_PROP_RW float samplerTrackInRadius;  //!< radius for gathering positive instances during tracking
							 | 
						||
| 
								 | 
							
								        CV_PROP_RW int samplerTrackMaxPosNum;  //!< # positive samples to use during tracking
							 | 
						||
| 
								 | 
							
								        CV_PROP_RW int samplerTrackMaxNegNum;  //!< # negative samples to use during tracking
							 | 
						||
| 
								 | 
							
								        CV_PROP_RW int featureSetNumFeatures;  //!< # features
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Create MIL tracker instance
							 | 
						||
| 
								 | 
							
								     *  @param parameters MIL parameters TrackerMIL::Params
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    static CV_WRAP
							 | 
						||
| 
								 | 
							
								    Ptr<TrackerMIL> create(const TrackerMIL::Params ¶meters = TrackerMIL::Params());
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    //void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
							 | 
						||
| 
								 | 
							
								    //bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/** @brief the GOTURN (Generic Object Tracking Using Regression Networks) tracker
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *  GOTURN (@cite GOTURN) is kind of trackers based on Convolutional Neural Networks (CNN). While taking all advantages of CNN trackers,
							 | 
						||
| 
								 | 
							
								 *  GOTURN is much faster due to offline training without online fine-tuning nature.
							 | 
						||
| 
								 | 
							
								 *  GOTURN tracker addresses the problem of single target tracking: given a bounding box label of an object in the first frame of the video,
							 | 
						||
| 
								 | 
							
								 *  we track that object through the rest of the video. NOTE: Current method of GOTURN does not handle occlusions; however, it is fairly
							 | 
						||
| 
								 | 
							
								 *  robust to viewpoint changes, lighting changes, and deformations.
							 | 
						||
| 
								 | 
							
								 *  Inputs of GOTURN are two RGB patches representing Target and Search patches resized to 227x227.
							 | 
						||
| 
								 | 
							
								 *  Outputs of GOTURN are predicted bounding box coordinates, relative to Search patch coordinate system, in format X1,Y1,X2,Y2.
							 | 
						||
| 
								 | 
							
								 *  Original paper is here: <http://davheld.github.io/GOTURN/GOTURN.pdf>
							 | 
						||
| 
								 | 
							
								 *  As long as original authors implementation: <https://github.com/davheld/GOTURN#train-the-tracker>
							 | 
						||
| 
								 | 
							
								 *  Implementation of training algorithm is placed in separately here due to 3d-party dependencies:
							 | 
						||
| 
								 | 
							
								 *  <https://github.com/Auron-X/GOTURN_Training_Toolkit>
							 | 
						||
| 
								 | 
							
								 *  GOTURN architecture goturn.prototxt and trained model goturn.caffemodel are accessible on opencv_extra GitHub repository.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								class CV_EXPORTS_W TrackerGOTURN : public Tracker
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								protected:
							 | 
						||
| 
								 | 
							
								    TrackerGOTURN();  // use ::create()
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    virtual ~TrackerGOTURN() CV_OVERRIDE;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    struct CV_EXPORTS_W_SIMPLE Params
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        CV_WRAP Params();
							 | 
						||
| 
								 | 
							
								        CV_PROP_RW std::string modelTxt;
							 | 
						||
| 
								 | 
							
								        CV_PROP_RW std::string modelBin;
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Constructor
							 | 
						||
| 
								 | 
							
								    @param parameters GOTURN parameters TrackerGOTURN::Params
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    static CV_WRAP
							 | 
						||
| 
								 | 
							
								    Ptr<TrackerGOTURN> create(const TrackerGOTURN::Params& parameters = TrackerGOTURN::Params());
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    //void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
							 | 
						||
| 
								 | 
							
								    //bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class CV_EXPORTS_W TrackerDaSiamRPN : public Tracker
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								protected:
							 | 
						||
| 
								 | 
							
								    TrackerDaSiamRPN();  // use ::create()
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								    virtual ~TrackerDaSiamRPN() CV_OVERRIDE;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    struct CV_EXPORTS_W_SIMPLE Params
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        CV_WRAP Params();
							 | 
						||
| 
								 | 
							
								        CV_PROP_RW std::string model;
							 | 
						||
| 
								 | 
							
								        CV_PROP_RW std::string kernel_cls1;
							 | 
						||
| 
								 | 
							
								        CV_PROP_RW std::string kernel_r1;
							 | 
						||
| 
								 | 
							
								        CV_PROP_RW int backend;
							 | 
						||
| 
								 | 
							
								        CV_PROP_RW int target;
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Constructor
							 | 
						||
| 
								 | 
							
								    @param parameters DaSiamRPN parameters TrackerDaSiamRPN::Params
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    static CV_WRAP
							 | 
						||
| 
								 | 
							
								    Ptr<TrackerDaSiamRPN> create(const TrackerDaSiamRPN::Params& parameters = TrackerDaSiamRPN::Params());
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /** @brief Return tracking score
							 | 
						||
| 
								 | 
							
								    */
							 | 
						||
| 
								 | 
							
								    CV_WRAP virtual float getTrackingScore() = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    //void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
							 | 
						||
| 
								 | 
							
								    //bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//! @} video_track
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								} // cv
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif
							 |