You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Cigarette/CigaretteSingle/OpenCV455Simple/include/opencv2/gapi/infer/ie.hpp

480 lines
16 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019-2021 Intel Corporation
#ifndef OPENCV_GAPI_INFER_IE_HPP
#define OPENCV_GAPI_INFER_IE_HPP
#include <unordered_map>
#include <unordered_set>
#include <string>
#include <array>
#include <tuple> // tuple, tuple_size
#include <map>
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/util/any.hpp>
#include <opencv2/core/cvdef.h> // GAPI_EXPORTS
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
#include <opencv2/gapi/infer.hpp> // Generic
namespace cv {
namespace gapi {
// FIXME: introduce a new sub-namespace for NN?
/**
* @brief This namespace contains G-API OpenVINO backend functions,
* structures, and symbols.
*/
namespace ie {
GAPI_EXPORTS cv::gapi::GBackend backend();
/**
* Specifies how G-API and IE should trait input data
*
* In OpenCV, the same cv::Mat is used to represent both
* image and tensor data. Sometimes those are hardly distinguishable,
* so this extra parameter is used to give G-API a hint.
*
* This hint controls how G-API reinterprets the data when converting
* it to IE Blob format (and which layout/etc is assigned to this data).
*/
enum class TraitAs: int
{
TENSOR, //!< G-API traits an associated cv::Mat as a raw tensor and passes dimensions as-is
IMAGE //!< G-API traits an associated cv::Mat as an image so creates an "image" blob (NCHW/NHWC, etc)
};
using IEConfig = std::map<std::string, std::string>;
namespace detail {
struct ParamDesc {
std::string model_path;
std::string weights_path;
std::string device_id;
std::vector<std::string> input_names;
std::vector<std::string> output_names;
using ConstInput = std::pair<cv::Mat, TraitAs>;
std::unordered_map<std::string, ConstInput> const_inputs;
std::size_t num_in;
std::size_t num_out;
enum class Kind {Load, Import};
Kind kind;
bool is_generic;
IEConfig config;
std::map<std::string, std::vector<std::size_t>> reshape_table;
std::unordered_set<std::string> layer_names_to_reshape;
// NB: Number of asyncrhonious infer requests
size_t nireq;
// NB: An optional config to setup RemoteContext for IE
cv::util::any context_config;
// NB: batch_size can't be equal to 1 by default, because some of models
// have 2D (Layout::NC) input and if the first dimension not equal to 1
// net.setBatchSize(1) will overwrite it.
cv::optional<size_t> batch_size;
};
} // namespace detail
// FIXME: this is probably a shared (reusable) thing
template<typename Net>
struct PortCfg {
using In = std::array
< std::string
, std::tuple_size<typename Net::InArgs>::value >;
using Out = std::array
< std::string
, std::tuple_size<typename Net::OutArgs>::value >;
};
/**
* @brief This structure provides functions
* that fill inference parameters for "OpenVINO Toolkit" model.
*/
template<typename Net> class Params {
public:
/** @brief Class constructor.
Constructs Params based on model information and specifies default values for other
inference description parameters. Model is loaded and compiled using "OpenVINO Toolkit".
@param model Path to topology IR (.xml file).
@param weights Path to weights (.bin file).
@param device target device to use.
*/
Params(const std::string &model,
const std::string &weights,
const std::string &device)
: desc{ model, weights, device, {}, {}, {}
, std::tuple_size<typename Net::InArgs>::value // num_in
, std::tuple_size<typename Net::OutArgs>::value // num_out
, detail::ParamDesc::Kind::Load
, false
, {}
, {}
, {}
, 1u
, {}
, {}} {
};
/** @overload
Use this constructor to work with pre-compiled network.
Model is imported from a pre-compiled blob.
@param model Path to model.
@param device target device to use.
*/
Params(const std::string &model,
const std::string &device)
: desc{ model, {}, device, {}, {}, {}
, std::tuple_size<typename Net::InArgs>::value // num_in
, std::tuple_size<typename Net::OutArgs>::value // num_out
, detail::ParamDesc::Kind::Import
, false
, {}
, {}
, {}
, 1u
, {}
, {}} {
};
/** @brief Specifies sequence of network input layers names for inference.
The function is used to associate cv::gapi::infer<> inputs with the model inputs.
Number of names has to match the number of network inputs as defined in G_API_NET().
In case a network has only single input layer, there is no need to specify name manually.
@param layer_names std::array<std::string, N> where N is the number of inputs
as defined in the @ref G_API_NET. Contains names of input layers.
@return reference to this parameter structure.
*/
Params<Net>& cfgInputLayers(const typename PortCfg<Net>::In &layer_names) {
desc.input_names.clear();
desc.input_names.reserve(layer_names.size());
std::copy(layer_names.begin(), layer_names.end(),
std::back_inserter(desc.input_names));
return *this;
}
/** @brief Specifies sequence of network output layers names for inference.
The function is used to associate cv::gapi::infer<> outputs with the model outputs.
Number of names has to match the number of network outputs as defined in G_API_NET().
In case a network has only single output layer, there is no need to specify name manually.
@param layer_names std::array<std::string, N> where N is the number of outputs
as defined in the @ref G_API_NET. Contains names of output layers.
@return reference to this parameter structure.
*/
Params<Net>& cfgOutputLayers(const typename PortCfg<Net>::Out &layer_names) {
desc.output_names.clear();
desc.output_names.reserve(layer_names.size());
std::copy(layer_names.begin(), layer_names.end(),
std::back_inserter(desc.output_names));
return *this;
}
/** @brief Specifies a constant input.
The function is used to set a constant input. This input has to be
a preprocessed tensor if its type is TENSOR. Need to provide name of the
network layer which will receive provided data.
@param layer_name Name of network layer.
@param data cv::Mat that contains data which will be associated with network layer.
@param hint Input type @sa cv::gapi::ie::TraitAs.
@return reference to this parameter structure.
*/
Params<Net>& constInput(const std::string &layer_name,
const cv::Mat &data,
TraitAs hint = TraitAs::TENSOR) {
desc.const_inputs[layer_name] = {data, hint};
return *this;
}
/** @brief Specifies OpenVINO plugin configuration.
The function is used to set configuration for OpenVINO plugin. Some parameters
can be different for each plugin. Please follow https://docs.openvinotoolkit.org/latest/index.html
to check information about specific plugin.
@param cfg Map of pairs: (config parameter name, config parameter value).
@return reference to this parameter structure.
*/
Params& pluginConfig(const IEConfig& cfg) {
desc.config = cfg;
return *this;
}
/** @overload
Function with a rvalue parameter.
@param cfg rvalue map of pairs: (config parameter name, config parameter value).
@return reference to this parameter structure.
*/
Params& pluginConfig(IEConfig&& cfg) {
desc.config = std::move(cfg);
return *this;
}
/** @brief Specifies configuration for RemoteContext in InferenceEngine.
When RemoteContext is configured the backend imports the networks using the context.
It also expects cv::MediaFrames to be actually remote, to operate with blobs via the context.
@param ctx_cfg cv::util::any value which holds InferenceEngine::ParamMap.
@return reference to this parameter structure.
*/
Params& cfgContextParams(const cv::util::any& ctx_cfg) {
desc.context_config = ctx_cfg;
return *this;
}
/** @overload
Function with an rvalue parameter.
@param ctx_cfg cv::util::any value which holds InferenceEngine::ParamMap.
@return reference to this parameter structure.
*/
Params& cfgContextParams(cv::util::any&& ctx_cfg) {
desc.context_config = std::move(ctx_cfg);
return *this;
}
/** @brief Specifies number of asynchronous inference requests.
@param nireq Number of inference asynchronous requests.
@return reference to this parameter structure.
*/
Params& cfgNumRequests(size_t nireq) {
GAPI_Assert(nireq > 0 && "Number of infer requests must be greater than zero!");
desc.nireq = nireq;
return *this;
}
/** @brief Specifies new input shapes for the network inputs.
The function is used to specify new input shapes for the network inputs.
Follow https://docs.openvinotoolkit.org/latest/classInferenceEngine_1_1networkNetwork.html
for additional information.
@param reshape_table Map of pairs: name of corresponding data and its dimension.
@return reference to this parameter structure.
*/
Params<Net>& cfgInputReshape(const std::map<std::string, std::vector<std::size_t>>& reshape_table) {
desc.reshape_table = reshape_table;
return *this;
}
/** @overload */
Params<Net>& cfgInputReshape(std::map<std::string, std::vector<std::size_t>>&& reshape_table) {
desc.reshape_table = std::move(reshape_table);
return *this;
}
/** @overload
@param layer_name Name of layer.
@param layer_dims New dimensions for this layer.
@return reference to this parameter structure.
*/
Params<Net>& cfgInputReshape(const std::string& layer_name, const std::vector<size_t>& layer_dims) {
desc.reshape_table.emplace(layer_name, layer_dims);
return *this;
}
/** @overload */
Params<Net>& cfgInputReshape(std::string&& layer_name, std::vector<size_t>&& layer_dims) {
desc.reshape_table.emplace(layer_name, layer_dims);
return *this;
}
/** @overload
@param layer_names set of names of network layers that will be used for network reshape.
@return reference to this parameter structure.
*/
Params<Net>& cfgInputReshape(const std::unordered_set<std::string>& layer_names) {
desc.layer_names_to_reshape = layer_names;
return *this;
}
/** @overload
@param layer_names rvalue set of the selected layers will be reshaped automatically
its input image size.
@return reference to this parameter structure.
*/
Params<Net>& cfgInputReshape(std::unordered_set<std::string>&& layer_names) {
desc.layer_names_to_reshape = std::move(layer_names);
return *this;
}
/** @brief Specifies the inference batch size.
The function is used to specify inference batch size.
Follow https://docs.openvinotoolkit.org/latest/classInferenceEngine_1_1CNNNetwork.html#a8e9d19270a48aab50cb5b1c43eecb8e9 for additional information
@param size batch size which will be used.
@return reference to this parameter structure.
*/
Params<Net>& cfgBatchSize(const size_t size) {
desc.batch_size = cv::util::make_optional(size);
return *this;
}
// BEGIN(G-API's network parametrization API)
GBackend backend() const { return cv::gapi::ie::backend(); }
std::string tag() const { return Net::tag(); }
cv::util::any params() const { return { desc }; }
// END(G-API's network parametrization API)
protected:
detail::ParamDesc desc;
};
/*
* @brief This structure provides functions for generic network type that
* fill inference parameters.
* @see struct Generic
*/
template<>
class Params<cv::gapi::Generic> {
public:
/** @brief Class constructor.
Constructs Params based on model information and sets default values for other
inference description parameters. Model is loaded and compiled using OpenVINO Toolkit.
@param tag string tag of the network for which these parameters are intended.
@param model path to topology IR (.xml file).
@param weights path to weights (.bin file).
@param device target device to use.
*/
Params(const std::string &tag,
const std::string &model,
const std::string &weights,
const std::string &device)
: desc{ model, weights, device, {}, {}, {}, 0u, 0u,
detail::ParamDesc::Kind::Load, true, {}, {}, {}, 1u,
{}, {}},
m_tag(tag) {
};
/** @overload
This constructor for pre-compiled networks. Model is imported from pre-compiled
blob.
@param tag string tag of the network for which these parameters are intended.
@param model path to model.
@param device target device to use.
*/
Params(const std::string &tag,
const std::string &model,
const std::string &device)
: desc{ model, {}, device, {}, {}, {}, 0u, 0u,
detail::ParamDesc::Kind::Import, true, {}, {}, {}, 1u,
{}, {}},
m_tag(tag) {
};
/** @see ie::Params::pluginConfig. */
Params& pluginConfig(const IEConfig& cfg) {
desc.config = cfg;
return *this;
}
/** @overload */
Params& pluginConfig(IEConfig&& cfg) {
desc.config = std::move(cfg);
return *this;
}
/** @see ie::Params::constInput. */
Params& constInput(const std::string &layer_name,
const cv::Mat &data,
TraitAs hint = TraitAs::TENSOR) {
desc.const_inputs[layer_name] = {data, hint};
return *this;
}
/** @see ie::Params::cfgNumRequests. */
Params& cfgNumRequests(size_t nireq) {
GAPI_Assert(nireq > 0 && "Number of infer requests must be greater than zero!");
desc.nireq = nireq;
return *this;
}
/** @see ie::Params::cfgInputReshape */
Params& cfgInputReshape(const std::map<std::string, std::vector<std::size_t>>&reshape_table) {
desc.reshape_table = reshape_table;
return *this;
}
/** @overload */
Params& cfgInputReshape(std::map<std::string, std::vector<std::size_t>> && reshape_table) {
desc.reshape_table = std::move(reshape_table);
return *this;
}
/** @overload */
Params& cfgInputReshape(std::string && layer_name, std::vector<size_t> && layer_dims) {
desc.reshape_table.emplace(layer_name, layer_dims);
return *this;
}
/** @overload */
Params& cfgInputReshape(const std::string & layer_name, const std::vector<size_t>&layer_dims) {
desc.reshape_table.emplace(layer_name, layer_dims);
return *this;
}
/** @overload */
Params& cfgInputReshape(std::unordered_set<std::string> && layer_names) {
desc.layer_names_to_reshape = std::move(layer_names);
return *this;
}
/** @overload */
Params& cfgInputReshape(const std::unordered_set<std::string>&layer_names) {
desc.layer_names_to_reshape = layer_names;
return *this;
}
/** @see ie::Params::cfgBatchSize */
Params& cfgBatchSize(const size_t size) {
desc.batch_size = cv::util::make_optional(size);
return *this;
}
// BEGIN(G-API's network parametrization API)
GBackend backend() const { return cv::gapi::ie::backend(); }
std::string tag() const { return m_tag; }
cv::util::any params() const { return { desc }; }
// END(G-API's network parametrization API)
protected:
detail::ParamDesc desc;
std::string m_tag;
};
} // namespace ie
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_INFER_IE_HPP