You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Cigarette/CigaretteSingle/OpenCV455Simple/include/opencv2/gapi/gkernel.hpp

750 lines
27 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2021 Intel Corporation
#ifndef OPENCV_GAPI_GKERNEL_HPP
#define OPENCV_GAPI_GKERNEL_HPP
#include <functional>
#include <iostream>
#include <string> // string
#include <type_traits> // false_type, true_type
#include <unordered_map> // map (for GKernelPackage)
#include <utility> // tuple
#include <opencv2/gapi/gcommon.hpp> // CompileArgTag
#include <opencv2/gapi/util/util.hpp> // Seq
#include <opencv2/gapi/gcall.hpp>
#include <opencv2/gapi/garg.hpp> // GArg
#include <opencv2/gapi/gmetaarg.hpp> // GMetaArg
#include <opencv2/gapi/gtype_traits.hpp> // GTypeTraits
#include <opencv2/gapi/util/compiler_hints.hpp> //suppress_unused_warning
#include <opencv2/gapi/gtransform.hpp>
namespace cv {
struct GTypeInfo
{
GShape shape;
cv::detail::OpaqueKind kind;
detail::HostCtor ctor;
};
using GShapes = std::vector<GShape>;
using GKinds = std::vector<cv::detail::OpaqueKind>;
using GCtors = std::vector<detail::HostCtor>;
using GTypesInfo = std::vector<GTypeInfo>;
// GKernel describes kernel API to the system
// FIXME: add attributes of a kernel, (e.g. number and types
// of inputs, etc)
struct GAPI_EXPORTS GKernel
{
using M = std::function<GMetaArgs(const GMetaArgs &, const GArgs &)>;
std::string name; // kernel ID, defined by its API (signature)
std::string tag; // some (implementation-specific) tag
M outMeta; // generic adaptor to API::outMeta(...)
GShapes outShapes; // types (shapes) kernel's outputs
GKinds inKinds; // kinds of kernel's inputs (fixme: below)
GCtors outCtors; // captured constructors for template output types
};
// TODO: It's questionable if inKinds should really be here. Instead,
// this information could come from meta.
// GKernelImpl describes particular kernel implementation to the system
struct GAPI_EXPORTS GKernelImpl
{
util::any opaque; // backend-specific opaque info
GKernel::M outMeta; // for deserialized graphs, the outMeta is taken here
};
template<typename, typename> class GKernelTypeM;
namespace detail
{
////////////////////////////////////////////////////////////////////////////
// yield() is used in graph construction time as a generic method to obtain
// lazy "return value" of G-API operations
//
template<typename T> struct Yield;
template<> struct Yield<cv::GMat>
{
static inline cv::GMat yield(cv::GCall &call, int i) { return call.yield(i); }
};
template<> struct Yield<cv::GMatP>
{
static inline cv::GMatP yield(cv::GCall &call, int i) { return call.yieldP(i); }
};
template<> struct Yield<cv::GScalar>
{
static inline cv::GScalar yield(cv::GCall &call, int i) { return call.yieldScalar(i); }
};
template<typename U> struct Yield<cv::GArray<U> >
{
static inline cv::GArray<U> yield(cv::GCall &call, int i) { return call.yieldArray<U>(i); }
};
template<typename U> struct Yield<cv::GOpaque<U> >
{
static inline cv::GOpaque<U> yield(cv::GCall &call, int i) { return call.yieldOpaque<U>(i); }
};
template<> struct Yield<GFrame>
{
static inline cv::GFrame yield(cv::GCall &call, int i) { return call.yieldFrame(i); }
};
////////////////////////////////////////////////////////////////////////////
// Helper classes which brings outputMeta() marshalling to kernel
// implementations
//
// 1. MetaType establishes G#Type -> G#Meta mapping between G-API dynamic
// types and its metadata descriptor types.
// This mapping is used to transform types to call outMeta() callback.
template<typename T> struct MetaType;
template<> struct MetaType<cv::GMat> { using type = GMatDesc; };
template<> struct MetaType<cv::GMatP> { using type = GMatDesc; };
template<> struct MetaType<cv::GFrame> { using type = GFrameDesc; };
template<> struct MetaType<cv::GScalar> { using type = GScalarDesc; };
template<typename U> struct MetaType<cv::GArray<U> > { using type = GArrayDesc; };
template<typename U> struct MetaType<cv::GOpaque<U> > { using type = GOpaqueDesc; };
template<typename T> struct MetaType { using type = T; }; // opaque args passed as-is
// FIXME: Move it to type traits?
// 2. Hacky test based on MetaType to check if we operate on G-* type or not
template<typename T> using is_nongapi_type = std::is_same<T, typename MetaType<T>::type>;
// 3. Two ways to transform input arguments to its meta - for G-* and non-G* types:
template<typename T>
typename std::enable_if<!is_nongapi_type<T>::value, typename MetaType<T>::type>
::type get_in_meta(const GMetaArgs &in_meta, const GArgs &, int idx)
{
return util::get<typename MetaType<T>::type>(in_meta.at(idx));
}
template<typename T>
typename std::enable_if<is_nongapi_type<T>::value, T>
::type get_in_meta(const GMetaArgs &, const GArgs &in_args, int idx)
{
return in_args.at(idx).template get<T>();
}
// 4. The MetaHelper itself: an entity which generates outMeta() call
// based on kernel signature, with arguments properly substituted.
// 4.1 - case for multiple return values
// FIXME: probably can be simplified with std::apply or analogue.
template<typename, typename, typename>
struct MetaHelper;
template<typename K, typename... Ins, typename... Outs>
struct MetaHelper<K, std::tuple<Ins...>, std::tuple<Outs...> >
{
template<int... IIs, int... OIs>
static GMetaArgs getOutMeta_impl(const GMetaArgs &in_meta,
const GArgs &in_args,
detail::Seq<IIs...>,
detail::Seq<OIs...>)
{
// FIXME: decay?
using R = std::tuple<typename MetaType<Outs>::type...>;
const R r = K::outMeta( get_in_meta<Ins>(in_meta, in_args, IIs)... );
return GMetaArgs{ GMetaArg(std::get<OIs>(r))... };
}
// FIXME: help users identify how outMeta must look like (via default impl w/static_assert?)
static GMetaArgs getOutMeta(const GMetaArgs &in_meta,
const GArgs &in_args)
{
return getOutMeta_impl(in_meta,
in_args,
typename detail::MkSeq<sizeof...(Ins)>::type(),
typename detail::MkSeq<sizeof...(Outs)>::type());
}
};
// 4.1 - case for a single return value
// FIXME: How to avoid duplication here?
template<typename K, typename... Ins, typename Out>
struct MetaHelper<K, std::tuple<Ins...>, Out >
{
template<int... IIs>
static GMetaArgs getOutMeta_impl(const GMetaArgs &in_meta,
const GArgs &in_args,
detail::Seq<IIs...>)
{
// FIXME: decay?
using R = typename MetaType<Out>::type;
const R r = K::outMeta( get_in_meta<Ins>(in_meta, in_args, IIs)... );
return GMetaArgs{ GMetaArg(r) };
}
// FIXME: help users identify how outMeta must look like (via default impl w/static_assert?)
static GMetaArgs getOutMeta(const GMetaArgs &in_meta,
const GArgs &in_args)
{
return getOutMeta_impl(in_meta,
in_args,
typename detail::MkSeq<sizeof...(Ins)>::type());
}
};
////////////////////////////////////////////////////////////////////////////
// Helper class to introduce tags to calls. By default there's no tag
struct NoTag {
static constexpr const char *tag() { return ""; }
};
} // namespace detail
// GKernelType and GKernelTypeM are base classes which implement typed ::on()
// method based on kernel signature. GKernelTypeM stands for multiple-return-value kernels
//
// G_TYPED_KERNEL and G_TYPED_KERNEL_M macros inherit user classes from GKernelType and
// GKernelTypeM respectively.
template<typename K, typename... R, typename... Args>
class GKernelTypeM<K, std::function<std::tuple<R...>(Args...)> >
: public detail::MetaHelper<K, std::tuple<Args...>, std::tuple<R...>>
, public detail::NoTag
{
template<int... IIs>
static std::tuple<R...> yield(cv::GCall &call, detail::Seq<IIs...>)
{
return std::make_tuple(detail::Yield<R>::yield(call, IIs)...);
}
public:
using InArgs = std::tuple<Args...>;
using OutArgs = std::tuple<R...>;
// TODO: Args&&... here?
static std::tuple<R...> on(Args... args)
{
cv::GCall call(GKernel{ K::id()
, K::tag()
, &K::getOutMeta
, {detail::GTypeTraits<R>::shape...}
, {detail::GTypeTraits<Args>::op_kind...}
, {detail::GObtainCtor<R>::get()...}});
call.pass(args...); // TODO: std::forward() here?
return yield(call, typename detail::MkSeq<sizeof...(R)>::type());
}
};
template<typename, typename> class GKernelType;
template<typename K, typename R, typename... Args>
class GKernelType<K, std::function<R(Args...)> >
: public detail::MetaHelper<K, std::tuple<Args...>, R>
, public detail::NoTag
{
public:
using InArgs = std::tuple<Args...>;
using OutArgs = std::tuple<R>;
static R on(Args... args)
{
cv::GCall call(GKernel{ K::id()
, K::tag()
, &K::getOutMeta
, {detail::GTypeTraits<R>::shape}
, {detail::GTypeTraits<Args>::op_kind...}
, {detail::GObtainCtor<R>::get()}});
call.pass(args...);
return detail::Yield<R>::yield(call, 0);
}
};
namespace detail {
// This tiny class eliminates the semantic difference between
// GKernelType and GKernelTypeM.
template<typename, typename> class KernelTypeMedium;
template<typename K, typename... R, typename... Args>
class KernelTypeMedium<K, std::function<std::tuple<R...>(Args...)>> :
public cv::GKernelTypeM<K, std::function<std::tuple<R...>(Args...)>> {};
template<typename K, typename R, typename... Args>
class KernelTypeMedium<K, std::function<R(Args...)>> :
public cv::GKernelType<K, std::function<R(Args...)>> {};
} // namespace detail
} // namespace cv
// FIXME: I don't know a better way so far. Feel free to suggest one
// The problem is that every typed kernel should have ::id() but body
// of the class is defined by user (with outMeta, other stuff)
//! @cond IGNORED
#define G_ID_HELPER_CLASS(Class) Class##IdHelper
#define G_ID_HELPER_BODY(Class, Id) \
struct G_ID_HELPER_CLASS(Class) \
{ \
static constexpr const char * id() {return Id;} \
}; \
//! @endcond
#define GET_G_TYPED_KERNEL(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, NAME, ...) NAME
#define COMBINE_SIGNATURE(...) __VA_ARGS__
// Ensure correct __VA_ARGS__ expansion on Windows
#define __WRAP_VAARGS(x) x
/**
* Helper for G_TYPED_KERNEL declares a new G-API Operation. See [Kernel API](@ref gapi_kernel_api)
* for more details.
*
* @param Class type name for this operation.
* @param API an `std::function<>`-like signature for the operation;
* return type is a single value or a tuple of multiple values.
* @param Id string identifier for the operation. Must be unique.
*/
#define G_TYPED_KERNEL_HELPER(Class, API, Id) \
G_ID_HELPER_BODY(Class, Id) \
struct Class final: public cv::detail::KernelTypeMedium<Class, std::function API >, \
public G_ID_HELPER_CLASS(Class)
// {body} is to be defined by user
#define G_TYPED_KERNEL_HELPER_2(Class, _1, _2, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2), Id)
#define G_TYPED_KERNEL_HELPER_3(Class, _1, _2, _3, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2, _3), Id)
#define G_TYPED_KERNEL_HELPER_4(Class, _1, _2, _3, _4, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2, _3, _4), Id)
#define G_TYPED_KERNEL_HELPER_5(Class, _1, _2, _3, _4, _5, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2, _3, _4, _5), Id)
#define G_TYPED_KERNEL_HELPER_6(Class, _1, _2, _3, _4, _5, _6, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2, _3, _4, _5, _6), Id)
#define G_TYPED_KERNEL_HELPER_7(Class, _1, _2, _3, _4, _5, _6, _7, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2, _3, _4, _5, _6, _7), Id)
#define G_TYPED_KERNEL_HELPER_8(Class, _1, _2, _3, _4, _5, _6, _7, _8, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2, _3, _4, _5, _6, _7, _8), Id)
#define G_TYPED_KERNEL_HELPER_9(Class, _1, _2, _3, _4, _5, _6, _7, _8, _9, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2, _3, _4, _5, _6, _7, _8, _9), Id)
#define G_TYPED_KERNEL_HELPER_10(Class, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10), Id)
/**
* Declares a new G-API Operation. See [Kernel API](@ref gapi_kernel_api)
* for more details.
*
* @param Class type name for this operation.
*/
#define G_TYPED_KERNEL(Class, ...) __WRAP_VAARGS(GET_G_TYPED_KERNEL(__VA_ARGS__, \
G_TYPED_KERNEL_HELPER_10, \
G_TYPED_KERNEL_HELPER_9, \
G_TYPED_KERNEL_HELPER_8, \
G_TYPED_KERNEL_HELPER_7, \
G_TYPED_KERNEL_HELPER_6, \
G_TYPED_KERNEL_HELPER_5, \
G_TYPED_KERNEL_HELPER_4, \
G_TYPED_KERNEL_HELPER_3, \
G_TYPED_KERNEL_HELPER_2, \
G_TYPED_KERNEL_HELPER)(Class, __VA_ARGS__)) \
/**
* Declares a new G-API Operation. See [Kernel API](@ref gapi_kernel_api) for more details.
*
* @deprecated This macro is deprecated in favor of `G_TYPED_KERNEL` that is used for declaring any
* G-API Operation.
*
* @param Class type name for this operation.
*/
#define G_TYPED_KERNEL_M G_TYPED_KERNEL
#define G_API_OP G_TYPED_KERNEL
#define G_API_OP_M G_API_OP
namespace cv
{
namespace gapi
{
// Prework: model "Device" API before it gets to G-API headers.
// FIXME: Don't mix with internal Backends class!
/// @private
class GAPI_EXPORTS GBackend
{
public:
class Priv;
// TODO: make it template (call `new` within??)
GBackend();
explicit GBackend(std::shared_ptr<Priv> &&p);
Priv& priv();
const Priv& priv() const;
std::size_t hash() const;
bool operator== (const GBackend &rhs) const;
private:
std::shared_ptr<Priv> m_priv;
};
inline bool operator != (const GBackend &lhs, const GBackend &rhs)
{
return !(lhs == rhs);
}
} // namespace gapi
} // namespace cv
namespace std
{
template<> struct hash<cv::gapi::GBackend>
{
std::size_t operator() (const cv::gapi::GBackend &b) const
{
return b.hash();
}
};
} // namespace std
namespace cv {
namespace gapi {
/// @private
class GFunctor
{
public:
virtual cv::GKernelImpl impl() const = 0;
virtual cv::gapi::GBackend backend() const = 0;
const char* id() const { return m_id; }
virtual ~GFunctor() = default;
protected:
GFunctor(const char* id) : m_id(id) { };
private:
const char* m_id;
};
/** \addtogroup gapi_compile_args
* @{
*/
// FIXME: Hide implementation
/**
* @brief A container class for heterogeneous kernel
* implementation collections and graph transformations.
*
* GKernelPackage is a special container class which stores kernel
* _implementations_ and graph _transformations_. Objects of this class
* are created and passed to cv::GComputation::compile() to specify
* which kernels to use and which transformations to apply in the
* compiled graph. GKernelPackage may contain kernels of
* different backends, e.g. be heterogeneous.
*
* The most easy way to create a kernel package is to use function
* cv::gapi::kernels(). This template functions takes kernel
* implementations in form of type list (variadic template) and
* generates a kernel package atop of that.
*
* Kernel packages can be also generated programmatically, starting
* with an empty package (created with the default constructor)
* and then by populating it with kernels via call to
* GKernelPackage::include(). Note this method is also a template
* one since G-API kernel and transformation implementations are _types_,
* not objects.
*
* Finally, two kernel packages can be combined into a new one
* with function cv::gapi::combine().
*/
class GAPI_EXPORTS_W_SIMPLE GKernelPackage
{
/// @private
using M = std::unordered_map<std::string, std::pair<GBackend, GKernelImpl>>;
/// @private
M m_id_kernels;
/// @private
std::vector<GTransform> m_transformations;
protected:
/// @private
// Remove ALL implementations of the given API (identified by ID)
void removeAPI(const std::string &id);
/// @private
// Partial include() specialization for kernels
template <typename KImpl>
typename std::enable_if<(std::is_base_of<cv::detail::KernelTag, KImpl>::value), void>::type
includeHelper()
{
auto backend = KImpl::backend();
auto kernel_id = KImpl::API::id();
auto kernel_impl = GKernelImpl{KImpl::kernel(), &KImpl::API::getOutMeta};
removeAPI(kernel_id);
m_id_kernels[kernel_id] = std::make_pair(backend, kernel_impl);
}
/// @private
// Partial include() specialization for transformations
template <typename TImpl>
typename std::enable_if<(std::is_base_of<cv::detail::TransformTag, TImpl>::value), void>::type
includeHelper()
{
m_transformations.emplace_back(TImpl::transformation());
}
public:
void include(const GFunctor& functor)
{
m_id_kernels[functor.id()] = std::make_pair(functor.backend(), functor.impl());
}
/**
* @brief Returns total number of kernels
* in the package (across all backends included)
*
* @return a number of kernels in the package
*/
std::size_t size() const;
/**
* @brief Returns vector of transformations included in the package
*
* @return vector of transformations included in the package
*/
const std::vector<GTransform>& get_transformations() const;
/**
* @brief Returns vector of kernel ids included in the package
*
* @return vector of kernel ids included in the package
*/
std::vector<std::string> get_kernel_ids() const;
/**
* @brief Test if a particular kernel _implementation_ KImpl is
* included in this kernel package.
*
* @sa includesAPI()
*
* @note cannot be applied to transformations
*
* @return true if there is such kernel, false otherwise.
*/
template<typename KImpl>
bool includes() const
{
static_assert(std::is_base_of<cv::detail::KernelTag, KImpl>::value,
"includes() can be applied to kernels only");
auto kernel_it = m_id_kernels.find(KImpl::API::id());
return kernel_it != m_id_kernels.end() &&
kernel_it->second.first == KImpl::backend();
}
/**
* @brief Remove all kernels associated with the given backend
* from the package.
*
* Does nothing if there's no kernels of this backend in the package.
*
* @param backend backend which kernels to remove
*/
void remove(const GBackend& backend);
/**
* @brief Remove all kernels implementing the given API from
* the package.
*
* Does nothing if there's no kernels implementing the given interface.
*/
template<typename KAPI>
void remove()
{
removeAPI(KAPI::id());
}
// FIXME: Rename to includes() and distinguish API/impl case by
// statically?
/**
* Check if package contains ANY implementation of a kernel API
* by API type.
*/
template<typename KAPI>
bool includesAPI() const
{
return includesAPI(KAPI::id());
}
/// @private
bool includesAPI(const std::string &id) const;
// FIXME: The below comment is wrong, and who needs this function?
/**
* @brief Find a kernel (by its API)
*
* Returns implementation corresponding id.
* Throws if nothing found.
*
* @return Backend which hosts matching kernel implementation.
*
*/
template<typename KAPI>
GBackend lookup() const
{
return lookup(KAPI::id()).first;
}
/// @private
std::pair<cv::gapi::GBackend, cv::GKernelImpl>
lookup(const std::string &id) const;
// FIXME: No overwrites allowed?
/**
* @brief Put a new kernel implementation or a new transformation
* KImpl into the package.
*/
template<typename KImpl>
void include()
{
includeHelper<KImpl>();
}
/**
* @brief Adds a new kernel based on it's backend and id into the kernel package
*
* @param backend backend associated with the kernel
* @param kernel_id a name/id of the kernel
*/
void include(const cv::gapi::GBackend& backend, const std::string& kernel_id)
{
removeAPI(kernel_id);
m_id_kernels[kernel_id] = std::make_pair(backend, GKernelImpl{{}, {}});
}
/**
* @brief Lists all backends which are included into package
*
* @return vector of backends
*/
std::vector<GBackend> backends() const;
// TODO: Doxygen bug -- it wants me to place this comment
// here, not below.
/**
* @brief Create a new package based on `lhs` and `rhs`.
*
* @param lhs "Left-hand-side" package in the process
* @param rhs "Right-hand-side" package in the process
* @return a new kernel package.
*/
friend GAPI_EXPORTS GKernelPackage combine(const GKernelPackage &lhs,
const GKernelPackage &rhs);
};
/**
* @brief Create a kernel package object containing kernels
* and transformations specified in variadic template argument.
*
* In G-API, kernel implementations and transformations are _types_.
* Every backend has its own kernel API (like GAPI_OCV_KERNEL() and
* GAPI_FLUID_KERNEL()) but all of that APIs define a new type for
* each kernel implementation.
*
* Use this function to pass kernel implementations (defined in
* either way) and transformations to the system. Example:
*
* @snippet samples/cpp/tutorial_code/gapi/doc_snippets/api_ref_snippets.cpp kernels_snippet
*
* Note that kernels() itself is a function returning object, not
* a type, so having `()` at the end is important -- it must be a
* function call.
*/
template<typename... KK> GKernelPackage kernels()
{
// FIXME: currently there is no check that transformations' signatures are unique
// and won't be any intersection in graph compilation stage
static_assert(cv::detail::all_unique<typename KK::API...>::value, "Kernels API must be unique");
GKernelPackage pkg;
// For those who wonder - below is a trick to call a number of
// methods based on parameter pack (zeroes just help hiding these
// calls into a sequence which helps to expand this parameter pack).
// Just note that `f(),a` always equals to `a` (with f() called!)
// and parentheses are used to hide function call in the expanded sequence.
// Leading 0 helps to handle case when KK is an empty list (kernels<>()).
int unused[] = { 0, (pkg.include<KK>(), 0)... };
cv::util::suppress_unused_warning(unused);
return pkg;
};
template<typename... FF>
GKernelPackage kernels(FF&... functors)
{
GKernelPackage pkg;
int unused[] = { 0, (pkg.include(functors), 0)... };
cv::util::suppress_unused_warning(unused);
return pkg;
};
/** @} */
// FYI - this function is already commented above
GAPI_EXPORTS GKernelPackage combine(const GKernelPackage &lhs,
const GKernelPackage &rhs);
/**
* @brief Combines multiple G-API kernel packages into one
*
* @overload
*
* This function successively combines the passed kernel packages using a right fold.
* Calling `combine(a, b, c)` is equal to `combine(a, combine(b, c))`.
*
* @return The resulting kernel package
*/
template<typename... Ps>
GKernelPackage combine(const GKernelPackage &a, const GKernelPackage &b, Ps&&... rest)
{
return combine(a, combine(b, rest...));
}
/** \addtogroup gapi_compile_args
* @{
*/
/**
* @brief cv::gapi::use_only() is a special combinator which hints G-API to use only
* kernels specified in cv::GComputation::compile() (and not to extend kernels available by
* default with that package).
*/
struct GAPI_EXPORTS use_only
{
GKernelPackage pkg;
};
/** @} */
} // namespace gapi
namespace detail
{
template<> struct CompileArgTag<cv::gapi::GKernelPackage>
{
static const char* tag() { return "gapi.kernel_package"; }
};
template<> struct CompileArgTag<cv::gapi::use_only>
{
static const char* tag() { return "gapi.use_only"; }
};
} // namespace detail
} // namespace cv
#endif // OPENCV_GAPI_GKERNEL_HPP