You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Cigarette/CigaretteSingle/OpenCV455Simple/include/opencv2/gapi/garray.hpp

441 lines
16 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation
#ifndef OPENCV_GAPI_GARRAY_HPP
#define OPENCV_GAPI_GARRAY_HPP
#include <functional>
#include <ostream>
#include <vector>
#include <memory>
#include <opencv2/gapi/own/exports.hpp>
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/util/variant.hpp>
#include <opencv2/gapi/util/throw.hpp>
#include <opencv2/gapi/own/assert.hpp>
#include <opencv2/gapi/gmat.hpp> // flatten_g only!
#include <opencv2/gapi/gscalar.hpp> // flatten_g only!
namespace cv
{
// Forward declaration; GNode and GOrigin are an internal
// (user-inaccessible) classes.
class GNode;
struct GOrigin;
template<typename T> class GArray;
/**
* \addtogroup gapi_meta_args
* @{
*/
struct GAPI_EXPORTS_W_SIMPLE GArrayDesc
{
// FIXME: Body
// FIXME: Also implement proper operator== then
bool operator== (const GArrayDesc&) const { return true; }
};
template<typename U> GArrayDesc descr_of(const std::vector<U> &) { return {};}
GAPI_EXPORTS_W inline GArrayDesc empty_array_desc() {return {}; }
/** @} */
std::ostream& operator<<(std::ostream& os, const cv::GArrayDesc &desc);
namespace detail
{
// ConstructVec is a callback which stores information about T and is used by
// G-API runtime to construct arrays in host memory (T remains opaque for G-API).
// ConstructVec is carried into G-API internals by GArrayU.
// Currently it is suitable for Host (CPU) plugins only, real offload may require
// more information for manual memory allocation on-device.
class VectorRef;
using ConstructVec = std::function<void(VectorRef&)>;
// This is the base struct for GArrayU type holder
struct TypeHintBase{virtual ~TypeHintBase() = default;};
// This class holds type of initial GArray to be checked from GArrayU
template <typename T>
struct TypeHint final : public TypeHintBase{};
// This class strips type information from GArray<T> and makes it usable
// in the G-API graph compiler (expression unrolling, graph generation, etc).
// Part of GProtoArg.
class GAPI_EXPORTS GArrayU
{
public:
GArrayU(const GNode &n, std::size_t out); // Operation result constructor
template <typename T>
bool holds() const; // Check if was created from GArray<T>
GOrigin& priv(); // Internal use only
const GOrigin& priv() const; // Internal use only
protected:
GArrayU(); // Default constructor
GArrayU(const detail::VectorRef& vref); // Constant value constructor
template<class> friend class cv::GArray; // (available to GArray<T> only)
void setConstructFcn(ConstructVec &&cv); // Store T-aware constructor
template <typename T>
void specifyType(); // Store type of initial GArray<T>
template <typename T>
void storeKind();
void setKind(cv::detail::OpaqueKind);
std::shared_ptr<GOrigin> m_priv;
std::shared_ptr<TypeHintBase> m_hint;
};
template <typename T>
bool GArrayU::holds() const{
GAPI_Assert(m_hint != nullptr);
using U = typename std::decay<T>::type;
return dynamic_cast<TypeHint<U>*>(m_hint.get()) != nullptr;
};
template <typename T>
void GArrayU::specifyType(){
m_hint.reset(new TypeHint<typename std::decay<T>::type>);
};
template <typename T>
void GArrayU::storeKind(){
setKind(cv::detail::GOpaqueTraits<T>::kind);
};
// This class represents a typed STL vector reference.
// Depending on origins, this reference may be either "just a" reference to
// an object created externally, OR actually own the underlying object
// (be value holder).
class BasicVectorRef
{
public:
// These fields are set by the derived class(es)
std::size_t m_elemSize = 0ul;
cv::GArrayDesc m_desc;
virtual ~BasicVectorRef() {}
virtual void mov(BasicVectorRef &ref) = 0;
virtual const void* ptr() const = 0;
virtual std::size_t size() const = 0;
};
template<typename T> class VectorRefT final: public BasicVectorRef
{
using empty_t = util::monostate;
using ro_ext_t = const std::vector<T> *;
using rw_ext_t = std::vector<T> *;
using rw_own_t = std::vector<T> ;
util::variant<empty_t, ro_ext_t, rw_ext_t, rw_own_t> m_ref;
inline bool isEmpty() const { return util::holds_alternative<empty_t>(m_ref); }
inline bool isROExt() const { return util::holds_alternative<ro_ext_t>(m_ref); }
inline bool isRWExt() const { return util::holds_alternative<rw_ext_t>(m_ref); }
inline bool isRWOwn() const { return util::holds_alternative<rw_own_t>(m_ref); }
void init(const std::vector<T>* vec = nullptr)
{
m_elemSize = sizeof(T);
if (vec) m_desc = cv::descr_of(*vec);
}
public:
VectorRefT() { init(); }
virtual ~VectorRefT() {}
explicit VectorRefT(const std::vector<T>& vec) : m_ref(&vec) { init(&vec); }
explicit VectorRefT(std::vector<T>& vec) : m_ref(&vec) { init(&vec); }
explicit VectorRefT(std::vector<T>&& vec) : m_ref(std::move(vec)) { init(&vec); }
// Reset a VectorRefT. Called only for objects instantiated
// internally in G-API (e.g. temporary GArray<T>'s within a
// computation). Reset here means both initialization
// (creating an object) and reset (discarding its existing
// content before the next execution). Must never be called
// for external VectorRefTs.
void reset()
{
if (isEmpty())
{
std::vector<T> empty_vector;
m_desc = cv::descr_of(empty_vector);
m_ref = std::move(empty_vector);
GAPI_Assert(isRWOwn());
}
else if (isRWOwn())
{
util::get<rw_own_t>(m_ref).clear();
}
else GAPI_Assert(false); // shouldn't be called in *EXT modes
}
// Obtain a WRITE reference to underlying object
// Used by CPU kernel API wrappers when a kernel execution frame
// is created
std::vector<T>& wref()
{
GAPI_Assert(isRWExt() || isRWOwn());
if (isRWExt()) return *util::get<rw_ext_t>(m_ref);
if (isRWOwn()) return util::get<rw_own_t>(m_ref);
util::throw_error(std::logic_error("Impossible happened"));
}
// Obtain a READ reference to underlying object
// Used by CPU kernel API wrappers when a kernel execution frame
// is created
const std::vector<T>& rref() const
{
// ANY vector can be accessed for reading, even if it declared for
// output. Example -- a GComputation from [in] to [out1,out2]
// where [out2] is a result of operation applied to [out1]:
//
// GComputation boundary
// . . . . . . .
// . .
// [in] ----> foo() ----> [out1]
// . . :
// . . . .:. . .
// . V .
// . bar() ---> [out2]
// . . . . . . . . . . . .
//
if (isROExt()) return *util::get<ro_ext_t>(m_ref);
if (isRWExt()) return *util::get<rw_ext_t>(m_ref);
if (isRWOwn()) return util::get<rw_own_t>(m_ref);
util::throw_error(std::logic_error("Impossible happened"));
}
virtual void mov(BasicVectorRef &v) override {
VectorRefT<T> *tv = dynamic_cast<VectorRefT<T>*>(&v);
GAPI_Assert(tv != nullptr);
wref() = std::move(tv->wref());
}
virtual const void* ptr() const override { return &rref(); }
virtual std::size_t size() const override { return rref().size(); }
};
// This class strips type information from VectorRefT<> and makes it usable
// in the G-API executables (carrying run-time data/information to kernels).
// Part of GRunArg.
// Its methods are typed proxies to VectorRefT<T>.
// VectorRef maintains "reference" semantics so two copies of VectoRef refer
// to the same underlying object.
// FIXME: Put a good explanation on why cv::OutputArray doesn't fit this role
class VectorRef
{
std::shared_ptr<BasicVectorRef> m_ref;
cv::detail::OpaqueKind m_kind = cv::detail::OpaqueKind::CV_UNKNOWN;
template<typename T> inline void check() const
{
GAPI_DbgAssert(dynamic_cast<VectorRefT<T>*>(m_ref.get()) != nullptr);
GAPI_Assert(sizeof(T) == m_ref->m_elemSize);
}
public:
VectorRef() = default;
template<typename T> explicit VectorRef(const std::vector<T>& vec)
: m_ref(new VectorRefT<T>(vec))
, m_kind(GOpaqueTraits<T>::kind)
{}
template<typename T> explicit VectorRef(std::vector<T>& vec)
: m_ref(new VectorRefT<T>(vec))
, m_kind(GOpaqueTraits<T>::kind)
{}
template<typename T> explicit VectorRef(std::vector<T>&& vec)
: m_ref(new VectorRefT<T>(std::move(vec)))
, m_kind(GOpaqueTraits<T>::kind)
{}
cv::detail::OpaqueKind getKind() const
{
return m_kind;
}
template<typename T> void reset()
{
if (!m_ref) m_ref.reset(new VectorRefT<T>());
check<T>();
storeKind<T>();
static_cast<VectorRefT<T>&>(*m_ref).reset();
}
template <typename T>
void storeKind()
{
m_kind = cv::detail::GOpaqueTraits<T>::kind;
}
template<typename T> std::vector<T>& wref()
{
check<T>();
return static_cast<VectorRefT<T>&>(*m_ref).wref();
}
template<typename T> const std::vector<T>& rref() const
{
check<T>();
return static_cast<VectorRefT<T>&>(*m_ref).rref();
}
// Check if was created for/from std::vector<T>
template <typename T> bool holds() const
{
if (!m_ref) return false;
using U = typename std::decay<T>::type;
return dynamic_cast<VectorRefT<U>*>(m_ref.get()) != nullptr;
}
void mov(VectorRef &v)
{
m_ref->mov(*v.m_ref);
}
cv::GArrayDesc descr_of() const
{
return m_ref->m_desc;
}
std::size_t size() const
{
return m_ref->size();
}
// May be used to uniquely identify this object internally
const void *ptr() const { return m_ref->ptr(); }
};
// Helper (FIXME: work-around?)
// stripping G types to their host types
// like cv::GArray<GMat> would still map to std::vector<cv::Mat>
// but not to std::vector<cv::GMat>
#if defined(GAPI_STANDALONE)
# define FLATTEN_NS cv::gapi::own
#else
# define FLATTEN_NS cv
#endif
template<class T> struct flatten_g;
template<> struct flatten_g<cv::GMat> { using type = FLATTEN_NS::Mat; };
template<> struct flatten_g<cv::GScalar> { using type = FLATTEN_NS::Scalar; };
template<class T> struct flatten_g<GArray<T>> { using type = std::vector<T>; };
template<class T> struct flatten_g { using type = T; };
#undef FLATTEN_NS
// FIXME: the above mainly duplicates "ProtoToParam" thing from gtyped.hpp
// but I decided not to include gtyped here - probably worth moving that stuff
// to some common place? (DM)
} // namespace detail
/** \addtogroup gapi_data_objects
* @{
*/
/**
* @brief `cv::GArray<T>` template class represents a list of objects
* of class `T` in the graph.
*
* `cv::GArray<T>` describes a functional relationship between
* operations consuming and producing arrays of objects of class
* `T`. The primary purpose of `cv::GArray<T>` is to represent a
* dynamic list of objects -- where the size of the list is not known
* at the graph construction or compile time. Examples include: corner
* and feature detectors (`cv::GArray<cv::Point>`), object detection
* and tracking results (`cv::GArray<cv::Rect>`). Programmers can use
* their own types with `cv::GArray<T>` in the custom operations.
*
* Similar to `cv::GScalar`, `cv::GArray<T>` may be value-initialized
* -- in this case a graph-constant value is associated with the object.
*
* `GArray<T>` is a virtual counterpart of `std::vector<T>`, which is
* usually used to represent the `GArray<T>` data in G-API during the
* execution.
*
* @sa `cv::GOpaque<T>`
*/
template<typename T> class GArray
{
public:
// Host type (or Flat type) - the type this GArray is actually
// specified to.
/// @private
using HT = typename detail::flatten_g<typename std::decay<T>::type>::type;
/**
* @brief Constructs a value-initialized `cv::GArray<T>`
*
* `cv::GArray<T>` objects may have their values
* be associated at graph construction time. It is useful when
* some operation has a `cv::GArray<T>` input which doesn't change during
* the program execution, and is set only once. In this case,
* there is no need to declare such `cv::GArray<T>` as a graph input.
*
* @note The value of `cv::GArray<T>` may be overwritten by assigning some
* other `cv::GArray<T>` to the object using `operator=` -- on the
* assigment, the old association or value is discarded.
*
* @param v a std::vector<T> to associate with this
* `cv::GArray<T>` object. Vector data is copied into the
* `cv::GArray<T>` (no reference to the passed data is held).
*/
explicit GArray(const std::vector<HT>& v) // Constant value constructor
: m_ref(detail::GArrayU(detail::VectorRef(v))) { putDetails(); }
/**
* @overload
* @brief Constructs a value-initialized `cv::GArray<T>`
*
* @param v a std::vector<T> to associate with this
* `cv::GArray<T>` object. Vector data is moved into the `cv::GArray<T>`.
*/
explicit GArray(std::vector<HT>&& v) // Move-constructor
: m_ref(detail::GArrayU(detail::VectorRef(std::move(v)))) { putDetails(); }
/**
* @brief Constructs an empty `cv::GArray<T>`
*
* Normally, empty G-API data objects denote a starting point of
* the graph. When an empty `cv::GArray<T>` is assigned to a result
* of some operation, it obtains a functional link to this
* operation (and is not empty anymore).
*/
GArray() { putDetails(); } // Empty constructor
/// @private
explicit GArray(detail::GArrayU &&ref) // GArrayU-based constructor
: m_ref(ref) { putDetails(); } // (used by GCall, not for users)
/// @private
detail::GArrayU strip() const {
return m_ref;
}
/// @private
static void VCtor(detail::VectorRef& vref) {
vref.reset<HT>();
}
private:
void putDetails() {
m_ref.setConstructFcn(&VCtor);
m_ref.specifyType<HT>(); // FIXME: to unify those 2 to avoid excessive dynamic_cast
m_ref.storeKind<HT>(); //
}
detail::GArrayU m_ref;
};
/** @} */
} // namespace cv
#endif // OPENCV_GAPI_GARRAY_HPP