You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			679 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
			
		
		
	
	
			679 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                          License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#ifndef OPENCV_CORE_AFFINE3_HPP
 | 
						|
#define OPENCV_CORE_AFFINE3_HPP
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
 | 
						|
#include <opencv2/core.hpp>
 | 
						|
 | 
						|
namespace cv
 | 
						|
{
 | 
						|
 | 
						|
//! @addtogroup core
 | 
						|
//! @{
 | 
						|
 | 
						|
    /** @brief Affine transform
 | 
						|
     *
 | 
						|
     * It represents a 4x4 homogeneous transformation matrix \f$T\f$
 | 
						|
     *
 | 
						|
     *  \f[T =
 | 
						|
     *  \begin{bmatrix}
 | 
						|
     *  R & t\\
 | 
						|
     *  0 & 1\\
 | 
						|
     *  \end{bmatrix}
 | 
						|
     *  \f]
 | 
						|
     *
 | 
						|
     *  where \f$R\f$ is a 3x3 rotation matrix and \f$t\f$ is a 3x1 translation vector.
 | 
						|
     *
 | 
						|
     *  You can specify \f$R\f$ either by a 3x3 rotation matrix or by a 3x1 rotation vector,
 | 
						|
     *  which is converted to a 3x3 rotation matrix by the Rodrigues formula.
 | 
						|
     *
 | 
						|
     *  To construct a matrix \f$T\f$ representing first rotation around the axis \f$r\f$ with rotation
 | 
						|
     *  angle \f$|r|\f$ in radian (right hand rule) and then translation by the vector \f$t\f$, you can use
 | 
						|
     *
 | 
						|
     *  @code
 | 
						|
     *  cv::Vec3f r, t;
 | 
						|
     *  cv::Affine3f T(r, t);
 | 
						|
     *  @endcode
 | 
						|
     *
 | 
						|
     *  If you already have the rotation matrix \f$R\f$, then you can use
 | 
						|
     *
 | 
						|
     *  @code
 | 
						|
     *  cv::Matx33f R;
 | 
						|
     *  cv::Affine3f T(R, t);
 | 
						|
     *  @endcode
 | 
						|
     *
 | 
						|
     *  To extract the rotation matrix \f$R\f$ from \f$T\f$, use
 | 
						|
     *
 | 
						|
     *  @code
 | 
						|
     *  cv::Matx33f R = T.rotation();
 | 
						|
     *  @endcode
 | 
						|
     *
 | 
						|
     *  To extract the translation vector \f$t\f$ from \f$T\f$, use
 | 
						|
     *
 | 
						|
     *  @code
 | 
						|
     *  cv::Vec3f t = T.translation();
 | 
						|
     *  @endcode
 | 
						|
     *
 | 
						|
     *  To extract the rotation vector \f$r\f$ from \f$T\f$, use
 | 
						|
     *
 | 
						|
     *  @code
 | 
						|
     *  cv::Vec3f r = T.rvec();
 | 
						|
     *  @endcode
 | 
						|
     *
 | 
						|
     *  Note that since the mapping from rotation vectors to rotation matrices
 | 
						|
     *  is many to one. The returned rotation vector is not necessarily the one
 | 
						|
     *  you used before to set the matrix.
 | 
						|
     *
 | 
						|
     *  If you have two transformations \f$T = T_1 * T_2\f$, use
 | 
						|
     *
 | 
						|
     *  @code
 | 
						|
     *  cv::Affine3f T, T1, T2;
 | 
						|
     *  T = T2.concatenate(T1);
 | 
						|
     *  @endcode
 | 
						|
     *
 | 
						|
     *  To get the inverse transform of \f$T\f$, use
 | 
						|
     *
 | 
						|
     *  @code
 | 
						|
     *  cv::Affine3f T, T_inv;
 | 
						|
     *  T_inv = T.inv();
 | 
						|
     *  @endcode
 | 
						|
     *
 | 
						|
     */
 | 
						|
    template<typename T>
 | 
						|
    class Affine3
 | 
						|
    {
 | 
						|
    public:
 | 
						|
        typedef T float_type;
 | 
						|
        typedef Matx<float_type, 3, 3> Mat3;
 | 
						|
        typedef Matx<float_type, 4, 4> Mat4;
 | 
						|
        typedef Vec<float_type, 3> Vec3;
 | 
						|
 | 
						|
       //! Default constructor. It represents a 4x4 identity matrix.
 | 
						|
        Affine3();
 | 
						|
 | 
						|
        //! Augmented affine matrix
 | 
						|
        Affine3(const Mat4& affine);
 | 
						|
 | 
						|
        /**
 | 
						|
         *  The resulting 4x4 matrix is
 | 
						|
         *
 | 
						|
         *  \f[
 | 
						|
         *  \begin{bmatrix}
 | 
						|
         *  R & t\\
 | 
						|
         *  0 & 1\\
 | 
						|
         *  \end{bmatrix}
 | 
						|
         *  \f]
 | 
						|
         *
 | 
						|
         * @param R 3x3 rotation matrix.
 | 
						|
         * @param t 3x1 translation vector.
 | 
						|
         */
 | 
						|
        Affine3(const Mat3& R, const Vec3& t = Vec3::all(0));
 | 
						|
 | 
						|
        /**
 | 
						|
         * Rodrigues vector.
 | 
						|
         *
 | 
						|
         * The last row of the current matrix is set to [0,0,0,1].
 | 
						|
         *
 | 
						|
         * @param rvec 3x1 rotation vector. Its direction indicates the rotation axis and its length
 | 
						|
         *             indicates the rotation angle in radian (using right hand rule).
 | 
						|
         * @param t 3x1 translation vector.
 | 
						|
         */
 | 
						|
        Affine3(const Vec3& rvec, const Vec3& t = Vec3::all(0));
 | 
						|
 | 
						|
        /**
 | 
						|
         * Combines all constructors above. Supports 4x4, 3x4, 3x3, 1x3, 3x1 sizes of data matrix.
 | 
						|
         *
 | 
						|
         * The last row of the current matrix is set to [0,0,0,1] when data is not 4x4.
 | 
						|
         *
 | 
						|
         * @param data 1-channel matrix.
 | 
						|
         *             when it is 4x4, it is copied to the current matrix and t is not used.
 | 
						|
         *             When it is 3x4, it is copied to the upper part 3x4 of the current matrix and t is not used.
 | 
						|
         *             When it is 3x3, it is copied to the upper left 3x3 part of the current matrix.
 | 
						|
         *             When it is 3x1 or 1x3, it is treated as a rotation vector and the Rodrigues formula is used
 | 
						|
         *                             to compute a 3x3 rotation matrix.
 | 
						|
         * @param t 3x1 translation vector. It is used only when data is neither 4x4 nor 3x4.
 | 
						|
         */
 | 
						|
        explicit Affine3(const Mat& data, const Vec3& t = Vec3::all(0));
 | 
						|
 | 
						|
        //! From 16-element array
 | 
						|
        explicit Affine3(const float_type* vals);
 | 
						|
 | 
						|
        //! Create an 4x4 identity transform
 | 
						|
        static Affine3 Identity();
 | 
						|
 | 
						|
        /**
 | 
						|
         * Rotation matrix.
 | 
						|
         *
 | 
						|
         * Copy the rotation matrix to the upper left 3x3 part of the current matrix.
 | 
						|
         * The remaining elements of the current matrix are not changed.
 | 
						|
         *
 | 
						|
         * @param R 3x3 rotation matrix.
 | 
						|
         *
 | 
						|
         */
 | 
						|
        void rotation(const Mat3& R);
 | 
						|
 | 
						|
        /**
 | 
						|
         * Rodrigues vector.
 | 
						|
         *
 | 
						|
         * It sets the upper left 3x3 part of the matrix. The remaining part is unaffected.
 | 
						|
         *
 | 
						|
         * @param rvec 3x1 rotation vector. The direction indicates the rotation axis and
 | 
						|
         *             its length indicates the rotation angle in radian (using the right thumb convention).
 | 
						|
         */
 | 
						|
        void rotation(const Vec3& rvec);
 | 
						|
 | 
						|
        /**
 | 
						|
         * Combines rotation methods above. Supports 3x3, 1x3, 3x1 sizes of data matrix.
 | 
						|
         *
 | 
						|
         * It sets the upper left 3x3 part of the matrix. The remaining part is unaffected.
 | 
						|
         *
 | 
						|
         * @param data 1-channel matrix.
 | 
						|
         *             When it is a 3x3 matrix, it sets the upper left 3x3 part of the current matrix.
 | 
						|
         *             When it is a 1x3 or 3x1 matrix, it is used as a rotation vector. The Rodrigues formula
 | 
						|
         *             is used to compute the rotation matrix and sets the upper left 3x3 part of the current matrix.
 | 
						|
         */
 | 
						|
        void rotation(const Mat& data);
 | 
						|
 | 
						|
        /**
 | 
						|
         * Copy the 3x3 matrix L to the upper left part of the current matrix
 | 
						|
         *
 | 
						|
         * It sets the upper left 3x3 part of the matrix. The remaining part is unaffected.
 | 
						|
         *
 | 
						|
         * @param L 3x3 matrix.
 | 
						|
         */
 | 
						|
        void linear(const Mat3& L);
 | 
						|
 | 
						|
        /**
 | 
						|
         * Copy t to the first three elements of the last column of the current matrix
 | 
						|
         *
 | 
						|
         * It sets the upper right 3x1 part of the matrix. The remaining part is unaffected.
 | 
						|
         *
 | 
						|
         * @param t 3x1 translation vector.
 | 
						|
         */
 | 
						|
        void translation(const Vec3& t);
 | 
						|
 | 
						|
        //! @return the upper left 3x3 part
 | 
						|
        Mat3 rotation() const;
 | 
						|
 | 
						|
        //! @return the upper left 3x3 part
 | 
						|
        Mat3 linear() const;
 | 
						|
 | 
						|
        //! @return the upper right 3x1 part
 | 
						|
        Vec3 translation() const;
 | 
						|
 | 
						|
        //! Rodrigues vector.
 | 
						|
        //! @return a vector representing the upper left 3x3 rotation matrix of the current matrix.
 | 
						|
        //! @warning  Since the mapping between rotation vectors and rotation matrices is many to one,
 | 
						|
        //!           this function returns only one rotation vector that represents the current rotation matrix,
 | 
						|
        //!           which is not necessarily the same one set by `rotation(const Vec3& rvec)`.
 | 
						|
        Vec3 rvec() const;
 | 
						|
 | 
						|
        //! @return the inverse of the current matrix.
 | 
						|
        Affine3 inv(int method = cv::DECOMP_SVD) const;
 | 
						|
 | 
						|
        //! a.rotate(R) is equivalent to Affine(R, 0) * a;
 | 
						|
        Affine3 rotate(const Mat3& R) const;
 | 
						|
 | 
						|
        //! a.rotate(rvec) is equivalent to Affine(rvec, 0) * a;
 | 
						|
        Affine3 rotate(const Vec3& rvec) const;
 | 
						|
 | 
						|
        //! a.translate(t) is equivalent to Affine(E, t) * a, where E is an identity matrix
 | 
						|
        Affine3 translate(const Vec3& t) const;
 | 
						|
 | 
						|
        //! a.concatenate(affine) is equivalent to affine * a;
 | 
						|
        Affine3 concatenate(const Affine3& affine) const;
 | 
						|
 | 
						|
        template <typename Y> operator Affine3<Y>() const;
 | 
						|
 | 
						|
        template <typename Y> Affine3<Y> cast() const;
 | 
						|
 | 
						|
        Mat4 matrix;
 | 
						|
 | 
						|
#if defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H
 | 
						|
        Affine3(const Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>& affine);
 | 
						|
        Affine3(const Eigen::Transform<T, 3, Eigen::Affine>& affine);
 | 
						|
        operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>() const;
 | 
						|
        operator Eigen::Transform<T, 3, Eigen::Affine>() const;
 | 
						|
#endif
 | 
						|
    };
 | 
						|
 | 
						|
    template<typename T> static
 | 
						|
    Affine3<T> operator*(const Affine3<T>& affine1, const Affine3<T>& affine2);
 | 
						|
 | 
						|
    //! V is a 3-element vector with member fields x, y and z
 | 
						|
    template<typename T, typename V> static
 | 
						|
    V operator*(const Affine3<T>& affine, const V& vector);
 | 
						|
 | 
						|
    typedef Affine3<float> Affine3f;
 | 
						|
    typedef Affine3<double> Affine3d;
 | 
						|
 | 
						|
    static Vec3f operator*(const Affine3f& affine, const Vec3f& vector);
 | 
						|
    static Vec3d operator*(const Affine3d& affine, const Vec3d& vector);
 | 
						|
 | 
						|
    template<typename _Tp> class DataType< Affine3<_Tp> >
 | 
						|
    {
 | 
						|
    public:
 | 
						|
        typedef Affine3<_Tp>                               value_type;
 | 
						|
        typedef Affine3<typename DataType<_Tp>::work_type> work_type;
 | 
						|
        typedef _Tp                                        channel_type;
 | 
						|
 | 
						|
        enum { generic_type = 0,
 | 
						|
               channels     = 16,
 | 
						|
               fmt          = traits::SafeFmt<channel_type>::fmt + ((channels - 1) << 8)
 | 
						|
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
 | 
						|
               ,depth        = DataType<channel_type>::depth
 | 
						|
               ,type         = CV_MAKETYPE(depth, channels)
 | 
						|
#endif
 | 
						|
             };
 | 
						|
 | 
						|
        typedef Vec<channel_type, channels> vec_type;
 | 
						|
    };
 | 
						|
 | 
						|
    namespace traits {
 | 
						|
    template<typename _Tp>
 | 
						|
    struct Depth< Affine3<_Tp> > { enum { value = Depth<_Tp>::value }; };
 | 
						|
    template<typename _Tp>
 | 
						|
    struct Type< Affine3<_Tp> > { enum { value = CV_MAKETYPE(Depth<_Tp>::value, 16) }; };
 | 
						|
    } // namespace
 | 
						|
 | 
						|
//! @} core
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
//! @cond IGNORED
 | 
						|
 | 
						|
///////////////////////////////////////////////////////////////////////////////////
 | 
						|
// Implementation
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
cv::Affine3<T>::Affine3()
 | 
						|
    : matrix(Mat4::eye())
 | 
						|
{}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
cv::Affine3<T>::Affine3(const Mat4& affine)
 | 
						|
    : matrix(affine)
 | 
						|
{}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
cv::Affine3<T>::Affine3(const Mat3& R, const Vec3& t)
 | 
						|
{
 | 
						|
    rotation(R);
 | 
						|
    translation(t);
 | 
						|
    matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
 | 
						|
    matrix.val[15] = 1;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
cv::Affine3<T>::Affine3(const Vec3& _rvec, const Vec3& t)
 | 
						|
{
 | 
						|
    rotation(_rvec);
 | 
						|
    translation(t);
 | 
						|
    matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
 | 
						|
    matrix.val[15] = 1;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
cv::Affine3<T>::Affine3(const cv::Mat& data, const Vec3& t)
 | 
						|
{
 | 
						|
    CV_Assert(data.type() == cv::traits::Type<T>::value);
 | 
						|
    CV_Assert(data.channels() == 1);
 | 
						|
 | 
						|
    if (data.cols == 4 && data.rows == 4)
 | 
						|
    {
 | 
						|
        data.copyTo(matrix);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    else if (data.cols == 4 && data.rows == 3)
 | 
						|
    {
 | 
						|
        rotation(data(Rect(0, 0, 3, 3)));
 | 
						|
        translation(data(Rect(3, 0, 1, 3)));
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        rotation(data);
 | 
						|
        translation(t);
 | 
						|
    }
 | 
						|
 | 
						|
    matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
 | 
						|
    matrix.val[15] = 1;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
cv::Affine3<T>::Affine3(const float_type* vals) : matrix(vals)
 | 
						|
{}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
cv::Affine3<T> cv::Affine3<T>::Identity()
 | 
						|
{
 | 
						|
    return Affine3<T>(cv::Affine3<T>::Mat4::eye());
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
void cv::Affine3<T>::rotation(const Mat3& R)
 | 
						|
{
 | 
						|
    linear(R);
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
void cv::Affine3<T>::rotation(const Vec3& _rvec)
 | 
						|
{
 | 
						|
    double theta = norm(_rvec);
 | 
						|
 | 
						|
    if (theta < DBL_EPSILON)
 | 
						|
        rotation(Mat3::eye());
 | 
						|
    else
 | 
						|
    {
 | 
						|
        double c = std::cos(theta);
 | 
						|
        double s = std::sin(theta);
 | 
						|
        double c1 = 1. - c;
 | 
						|
        double itheta = (theta != 0) ? 1./theta : 0.;
 | 
						|
 | 
						|
        Point3_<T> r = _rvec*itheta;
 | 
						|
 | 
						|
        Mat3 rrt( r.x*r.x, r.x*r.y, r.x*r.z, r.x*r.y, r.y*r.y, r.y*r.z, r.x*r.z, r.y*r.z, r.z*r.z );
 | 
						|
        Mat3 r_x( 0, -r.z, r.y, r.z, 0, -r.x, -r.y, r.x, 0 );
 | 
						|
 | 
						|
        // R = cos(theta)*I + (1 - cos(theta))*r*rT + sin(theta)*[r_x]
 | 
						|
        // where [r_x] is [0 -rz ry; rz 0 -rx; -ry rx 0]
 | 
						|
        Mat3 R = c*Mat3::eye() + c1*rrt + s*r_x;
 | 
						|
 | 
						|
        rotation(R);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//Combines rotation methods above. Supports 3x3, 1x3, 3x1 sizes of data matrix;
 | 
						|
template<typename T> inline
 | 
						|
void cv::Affine3<T>::rotation(const cv::Mat& data)
 | 
						|
{
 | 
						|
    CV_Assert(data.type() == cv::traits::Type<T>::value);
 | 
						|
    CV_Assert(data.channels() == 1);
 | 
						|
 | 
						|
    if (data.cols == 3 && data.rows == 3)
 | 
						|
    {
 | 
						|
        Mat3 R;
 | 
						|
        data.copyTo(R);
 | 
						|
        rotation(R);
 | 
						|
    }
 | 
						|
    else if ((data.cols == 3 && data.rows == 1) || (data.cols == 1 && data.rows == 3))
 | 
						|
    {
 | 
						|
        Vec3 _rvec;
 | 
						|
        data.reshape(1, 3).copyTo(_rvec);
 | 
						|
        rotation(_rvec);
 | 
						|
    }
 | 
						|
    else
 | 
						|
        CV_Error(Error::StsError, "Input matrix can only be 3x3, 1x3 or 3x1");
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
void cv::Affine3<T>::linear(const Mat3& L)
 | 
						|
{
 | 
						|
    matrix.val[0] = L.val[0]; matrix.val[1] = L.val[1];  matrix.val[ 2] = L.val[2];
 | 
						|
    matrix.val[4] = L.val[3]; matrix.val[5] = L.val[4];  matrix.val[ 6] = L.val[5];
 | 
						|
    matrix.val[8] = L.val[6]; matrix.val[9] = L.val[7];  matrix.val[10] = L.val[8];
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
void cv::Affine3<T>::translation(const Vec3& t)
 | 
						|
{
 | 
						|
    matrix.val[3] = t[0]; matrix.val[7] = t[1]; matrix.val[11] = t[2];
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
typename cv::Affine3<T>::Mat3 cv::Affine3<T>::rotation() const
 | 
						|
{
 | 
						|
    return linear();
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
typename cv::Affine3<T>::Mat3 cv::Affine3<T>::linear() const
 | 
						|
{
 | 
						|
    typename cv::Affine3<T>::Mat3 R;
 | 
						|
    R.val[0] = matrix.val[0];  R.val[1] = matrix.val[1];  R.val[2] = matrix.val[ 2];
 | 
						|
    R.val[3] = matrix.val[4];  R.val[4] = matrix.val[5];  R.val[5] = matrix.val[ 6];
 | 
						|
    R.val[6] = matrix.val[8];  R.val[7] = matrix.val[9];  R.val[8] = matrix.val[10];
 | 
						|
    return R;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
typename cv::Affine3<T>::Vec3 cv::Affine3<T>::translation() const
 | 
						|
{
 | 
						|
    return Vec3(matrix.val[3], matrix.val[7], matrix.val[11]);
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
typename cv::Affine3<T>::Vec3 cv::Affine3<T>::rvec() const
 | 
						|
{
 | 
						|
    cv::Vec3d w;
 | 
						|
    cv::Matx33d u, vt, R = rotation();
 | 
						|
    cv::SVD::compute(R, w, u, vt, cv::SVD::FULL_UV + cv::SVD::MODIFY_A);
 | 
						|
    R = u * vt;
 | 
						|
 | 
						|
    double rx = R.val[7] - R.val[5];
 | 
						|
    double ry = R.val[2] - R.val[6];
 | 
						|
    double rz = R.val[3] - R.val[1];
 | 
						|
 | 
						|
    double s = std::sqrt((rx*rx + ry*ry + rz*rz)*0.25);
 | 
						|
    double c = (R.val[0] + R.val[4] + R.val[8] - 1) * 0.5;
 | 
						|
    c = c > 1.0 ? 1.0 : c < -1.0 ? -1.0 : c;
 | 
						|
    double theta = std::acos(c);
 | 
						|
 | 
						|
    if( s < 1e-5 )
 | 
						|
    {
 | 
						|
        if( c > 0 )
 | 
						|
            rx = ry = rz = 0;
 | 
						|
        else
 | 
						|
        {
 | 
						|
            double t;
 | 
						|
            t = (R.val[0] + 1) * 0.5;
 | 
						|
            rx = std::sqrt(std::max(t, 0.0));
 | 
						|
            t = (R.val[4] + 1) * 0.5;
 | 
						|
            ry = std::sqrt(std::max(t, 0.0)) * (R.val[1] < 0 ? -1.0 : 1.0);
 | 
						|
            t = (R.val[8] + 1) * 0.5;
 | 
						|
            rz = std::sqrt(std::max(t, 0.0)) * (R.val[2] < 0 ? -1.0 : 1.0);
 | 
						|
 | 
						|
            if( fabs(rx) < fabs(ry) && fabs(rx) < fabs(rz) && (R.val[5] > 0) != (ry*rz > 0) )
 | 
						|
                rz = -rz;
 | 
						|
            theta /= std::sqrt(rx*rx + ry*ry + rz*rz);
 | 
						|
            rx *= theta;
 | 
						|
            ry *= theta;
 | 
						|
            rz *= theta;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        double vth = 1/(2*s);
 | 
						|
        vth *= theta;
 | 
						|
        rx *= vth; ry *= vth; rz *= vth;
 | 
						|
    }
 | 
						|
 | 
						|
    return cv::Vec3d(rx, ry, rz);
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
cv::Affine3<T> cv::Affine3<T>::inv(int method) const
 | 
						|
{
 | 
						|
    return matrix.inv(method);
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
cv::Affine3<T> cv::Affine3<T>::rotate(const Mat3& R) const
 | 
						|
{
 | 
						|
    Mat3 Lc = linear();
 | 
						|
    Vec3 tc = translation();
 | 
						|
    Mat4 result;
 | 
						|
    result.val[12] = result.val[13] = result.val[14] = 0;
 | 
						|
    result.val[15] = 1;
 | 
						|
 | 
						|
    for(int j = 0; j < 3; ++j)
 | 
						|
    {
 | 
						|
        for(int i = 0; i < 3; ++i)
 | 
						|
        {
 | 
						|
            float_type value = 0;
 | 
						|
            for(int k = 0; k < 3; ++k)
 | 
						|
                value += R(j, k) * Lc(k, i);
 | 
						|
            result(j, i) = value;
 | 
						|
        }
 | 
						|
 | 
						|
        result(j, 3) = R.row(j).dot(tc.t());
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
cv::Affine3<T> cv::Affine3<T>::rotate(const Vec3& _rvec) const
 | 
						|
{
 | 
						|
    return rotate(Affine3f(_rvec).rotation());
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
cv::Affine3<T> cv::Affine3<T>::translate(const Vec3& t) const
 | 
						|
{
 | 
						|
    Mat4 m = matrix;
 | 
						|
    m.val[ 3] += t[0];
 | 
						|
    m.val[ 7] += t[1];
 | 
						|
    m.val[11] += t[2];
 | 
						|
    return m;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
cv::Affine3<T> cv::Affine3<T>::concatenate(const Affine3<T>& affine) const
 | 
						|
{
 | 
						|
    return (*this).rotate(affine.rotation()).translate(affine.translation());
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> template <typename Y> inline
 | 
						|
cv::Affine3<T>::operator Affine3<Y>() const
 | 
						|
{
 | 
						|
    return Affine3<Y>(matrix);
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> template <typename Y> inline
 | 
						|
cv::Affine3<Y> cv::Affine3<T>::cast() const
 | 
						|
{
 | 
						|
    return Affine3<Y>(matrix);
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
cv::Affine3<T> cv::operator*(const cv::Affine3<T>& affine1, const cv::Affine3<T>& affine2)
 | 
						|
{
 | 
						|
    return affine2.concatenate(affine1);
 | 
						|
}
 | 
						|
 | 
						|
template<typename T, typename V> inline
 | 
						|
V cv::operator*(const cv::Affine3<T>& affine, const V& v)
 | 
						|
{
 | 
						|
    const typename Affine3<T>::Mat4& m = affine.matrix;
 | 
						|
 | 
						|
    V r;
 | 
						|
    r.x = m.val[0] * v.x + m.val[1] * v.y + m.val[ 2] * v.z + m.val[ 3];
 | 
						|
    r.y = m.val[4] * v.x + m.val[5] * v.y + m.val[ 6] * v.z + m.val[ 7];
 | 
						|
    r.z = m.val[8] * v.x + m.val[9] * v.y + m.val[10] * v.z + m.val[11];
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
static inline
 | 
						|
cv::Vec3f cv::operator*(const cv::Affine3f& affine, const cv::Vec3f& v)
 | 
						|
{
 | 
						|
    const cv::Matx44f& m = affine.matrix;
 | 
						|
    cv::Vec3f r;
 | 
						|
    r.val[0] = m.val[0] * v[0] + m.val[1] * v[1] + m.val[ 2] * v[2] + m.val[ 3];
 | 
						|
    r.val[1] = m.val[4] * v[0] + m.val[5] * v[1] + m.val[ 6] * v[2] + m.val[ 7];
 | 
						|
    r.val[2] = m.val[8] * v[0] + m.val[9] * v[1] + m.val[10] * v[2] + m.val[11];
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
static inline
 | 
						|
cv::Vec3d cv::operator*(const cv::Affine3d& affine, const cv::Vec3d& v)
 | 
						|
{
 | 
						|
    const cv::Matx44d& m = affine.matrix;
 | 
						|
    cv::Vec3d r;
 | 
						|
    r.val[0] = m.val[0] * v[0] + m.val[1] * v[1] + m.val[ 2] * v[2] + m.val[ 3];
 | 
						|
    r.val[1] = m.val[4] * v[0] + m.val[5] * v[1] + m.val[ 6] * v[2] + m.val[ 7];
 | 
						|
    r.val[2] = m.val[8] * v[0] + m.val[9] * v[1] + m.val[10] * v[2] + m.val[11];
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#if defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
cv::Affine3<T>::Affine3(const Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>& affine)
 | 
						|
{
 | 
						|
    cv::Mat(4, 4, cv::traits::Type<T>::value, affine.matrix().data()).copyTo(matrix);
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
cv::Affine3<T>::Affine3(const Eigen::Transform<T, 3, Eigen::Affine>& affine)
 | 
						|
{
 | 
						|
    Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)> a = affine;
 | 
						|
    cv::Mat(4, 4, cv::traits::Type<T>::value, a.matrix().data()).copyTo(matrix);
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
cv::Affine3<T>::operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>() const
 | 
						|
{
 | 
						|
    Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)> r;
 | 
						|
    cv::Mat hdr(4, 4, cv::traits::Type<T>::value, r.matrix().data());
 | 
						|
    cv::Mat(matrix, false).copyTo(hdr);
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> inline
 | 
						|
cv::Affine3<T>::operator Eigen::Transform<T, 3, Eigen::Affine>() const
 | 
						|
{
 | 
						|
    return this->operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>();
 | 
						|
}
 | 
						|
 | 
						|
#endif /* defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H */
 | 
						|
 | 
						|
//! @endcond
 | 
						|
 | 
						|
#endif /* __cplusplus */
 | 
						|
 | 
						|
#endif /* OPENCV_CORE_AFFINE3_HPP */
 |