You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			1271 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
			
		
		
	
	
			1271 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                          License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#ifndef OPENCV_CORE_CUDA_HPP
 | 
						|
#define OPENCV_CORE_CUDA_HPP
 | 
						|
 | 
						|
#ifndef __cplusplus
 | 
						|
#  error cuda.hpp header must be compiled as C++
 | 
						|
#endif
 | 
						|
 | 
						|
#include "opencv2/core.hpp"
 | 
						|
#include "opencv2/core/cuda_types.hpp"
 | 
						|
 | 
						|
/**
 | 
						|
  @defgroup cuda CUDA-accelerated Computer Vision
 | 
						|
  @{
 | 
						|
    @defgroup cudacore Core part
 | 
						|
    @{
 | 
						|
      @defgroup cudacore_init Initialization and Information
 | 
						|
      @defgroup cudacore_struct Data Structures
 | 
						|
    @}
 | 
						|
  @}
 | 
						|
 */
 | 
						|
 | 
						|
namespace cv { namespace cuda {
 | 
						|
 | 
						|
//! @addtogroup cudacore_struct
 | 
						|
//! @{
 | 
						|
 | 
						|
//===================================================================================
 | 
						|
// GpuMat
 | 
						|
//===================================================================================
 | 
						|
 | 
						|
/** @brief Base storage class for GPU memory with reference counting.
 | 
						|
 | 
						|
Its interface matches the Mat interface with the following limitations:
 | 
						|
 | 
						|
-   no arbitrary dimensions support (only 2D)
 | 
						|
-   no functions that return references to their data (because references on GPU are not valid for
 | 
						|
    CPU)
 | 
						|
-   no expression templates technique support
 | 
						|
 | 
						|
Beware that the latter limitation may lead to overloaded matrix operators that cause memory
 | 
						|
allocations. The GpuMat class is convertible to cuda::PtrStepSz and cuda::PtrStep so it can be
 | 
						|
passed directly to the kernel.
 | 
						|
 | 
						|
@note In contrast with Mat, in most cases GpuMat::isContinuous() == false . This means that rows are
 | 
						|
aligned to a size depending on the hardware. Single-row GpuMat is always a continuous matrix.
 | 
						|
 | 
						|
@note You are not recommended to leave static or global GpuMat variables allocated, that is, to rely
 | 
						|
on its destructor. The destruction order of such variables and CUDA context is undefined. GPU memory
 | 
						|
release function returns error if the CUDA context has been destroyed before.
 | 
						|
 | 
						|
Some member functions are described as a "Blocking Call" while some are described as a
 | 
						|
"Non-Blocking Call". Blocking functions are synchronous to host. It is guaranteed that the GPU
 | 
						|
operation is finished when the function returns. However, non-blocking functions are asynchronous to
 | 
						|
host. Those functions may return even if the GPU operation is not finished.
 | 
						|
 | 
						|
Compared to their blocking counterpart, non-blocking functions accept Stream as an additional
 | 
						|
argument. If a non-default stream is passed, the GPU operation may overlap with operations in other
 | 
						|
streams.
 | 
						|
 | 
						|
@sa Mat
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W GpuMat
 | 
						|
{
 | 
						|
public:
 | 
						|
    class CV_EXPORTS_W Allocator
 | 
						|
    {
 | 
						|
    public:
 | 
						|
        virtual ~Allocator() {}
 | 
						|
 | 
						|
        // allocator must fill data, step and refcount fields
 | 
						|
        virtual bool allocate(GpuMat* mat, int rows, int cols, size_t elemSize) = 0;
 | 
						|
        virtual void free(GpuMat* mat) = 0;
 | 
						|
    };
 | 
						|
 | 
						|
    //! default allocator
 | 
						|
    CV_WRAP static GpuMat::Allocator* defaultAllocator();
 | 
						|
    CV_WRAP static void setDefaultAllocator(GpuMat::Allocator* allocator);
 | 
						|
 | 
						|
    //! default constructor
 | 
						|
    CV_WRAP explicit GpuMat(GpuMat::Allocator* allocator = GpuMat::defaultAllocator());
 | 
						|
 | 
						|
    //! constructs GpuMat of the specified size and type
 | 
						|
    CV_WRAP GpuMat(int rows, int cols, int type, GpuMat::Allocator* allocator = GpuMat::defaultAllocator());
 | 
						|
    CV_WRAP GpuMat(Size size, int type, GpuMat::Allocator* allocator = GpuMat::defaultAllocator());
 | 
						|
 | 
						|
    //! constructs GpuMat and fills it with the specified value _s
 | 
						|
    CV_WRAP GpuMat(int rows, int cols, int type, Scalar s, GpuMat::Allocator* allocator = GpuMat::defaultAllocator());
 | 
						|
    CV_WRAP GpuMat(Size size, int type, Scalar s, GpuMat::Allocator* allocator = GpuMat::defaultAllocator());
 | 
						|
 | 
						|
    //! copy constructor
 | 
						|
    CV_WRAP GpuMat(const GpuMat& m);
 | 
						|
 | 
						|
    //! constructor for GpuMat headers pointing to user-allocated data
 | 
						|
    GpuMat(int rows, int cols, int type, void* data, size_t step = Mat::AUTO_STEP);
 | 
						|
    GpuMat(Size size, int type, void* data, size_t step = Mat::AUTO_STEP);
 | 
						|
 | 
						|
    //! creates a GpuMat header for a part of the bigger matrix
 | 
						|
    CV_WRAP GpuMat(const GpuMat& m, Range rowRange, Range colRange);
 | 
						|
    CV_WRAP GpuMat(const GpuMat& m, Rect roi);
 | 
						|
 | 
						|
    //! builds GpuMat from host memory (Blocking call)
 | 
						|
    CV_WRAP explicit GpuMat(InputArray arr, GpuMat::Allocator* allocator = GpuMat::defaultAllocator());
 | 
						|
 | 
						|
    //! destructor - calls release()
 | 
						|
    ~GpuMat();
 | 
						|
 | 
						|
    //! assignment operators
 | 
						|
    GpuMat& operator =(const GpuMat& m);
 | 
						|
 | 
						|
    //! allocates new GpuMat data unless the GpuMat already has specified size and type
 | 
						|
    CV_WRAP void create(int rows, int cols, int type);
 | 
						|
    CV_WRAP void create(Size size, int type);
 | 
						|
 | 
						|
    //! decreases reference counter, deallocate the data when reference counter reaches 0
 | 
						|
    void release();
 | 
						|
 | 
						|
    //! swaps with other smart pointer
 | 
						|
    CV_WRAP void swap(GpuMat& mat);
 | 
						|
 | 
						|
    /** @brief Performs data upload to GpuMat (Blocking call)
 | 
						|
 | 
						|
    This function copies data from host memory to device memory. As being a blocking call, it is
 | 
						|
    guaranteed that the copy operation is finished when this function returns.
 | 
						|
    */
 | 
						|
    CV_WRAP void upload(InputArray arr);
 | 
						|
 | 
						|
    /** @brief Performs data upload to GpuMat (Non-Blocking call)
 | 
						|
 | 
						|
    This function copies data from host memory to device memory. As being a non-blocking call, this
 | 
						|
    function may return even if the copy operation is not finished.
 | 
						|
 | 
						|
    The copy operation may be overlapped with operations in other non-default streams if \p stream is
 | 
						|
    not the default stream and \p dst is HostMem allocated with HostMem::PAGE_LOCKED option.
 | 
						|
    */
 | 
						|
    CV_WRAP void upload(InputArray arr, Stream& stream);
 | 
						|
 | 
						|
    /** @brief Performs data download from GpuMat (Blocking call)
 | 
						|
 | 
						|
    This function copies data from device memory to host memory. As being a blocking call, it is
 | 
						|
    guaranteed that the copy operation is finished when this function returns.
 | 
						|
    */
 | 
						|
    CV_WRAP void download(OutputArray dst) const;
 | 
						|
 | 
						|
    /** @brief Performs data download from GpuMat (Non-Blocking call)
 | 
						|
 | 
						|
    This function copies data from device memory to host memory. As being a non-blocking call, this
 | 
						|
    function may return even if the copy operation is not finished.
 | 
						|
 | 
						|
    The copy operation may be overlapped with operations in other non-default streams if \p stream is
 | 
						|
    not the default stream and \p dst is HostMem allocated with HostMem::PAGE_LOCKED option.
 | 
						|
    */
 | 
						|
    CV_WRAP void download(OutputArray dst, Stream& stream) const;
 | 
						|
 | 
						|
    //! returns deep copy of the GpuMat, i.e. the data is copied
 | 
						|
    CV_WRAP GpuMat clone() const;
 | 
						|
 | 
						|
    //! copies the GpuMat content to device memory (Blocking call)
 | 
						|
    CV_WRAP void copyTo(OutputArray dst) const;
 | 
						|
 | 
						|
    //! copies the GpuMat content to device memory (Non-Blocking call)
 | 
						|
    CV_WRAP void copyTo(OutputArray dst, Stream& stream) const;
 | 
						|
 | 
						|
    //! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Blocking call)
 | 
						|
    CV_WRAP void copyTo(OutputArray dst, InputArray mask) const;
 | 
						|
 | 
						|
    //! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Non-Blocking call)
 | 
						|
    CV_WRAP void copyTo(OutputArray dst, InputArray mask, Stream& stream) const;
 | 
						|
 | 
						|
    //! sets some of the GpuMat elements to s (Blocking call)
 | 
						|
    CV_WRAP GpuMat& setTo(Scalar s);
 | 
						|
 | 
						|
    //! sets some of the GpuMat elements to s (Non-Blocking call)
 | 
						|
    CV_WRAP GpuMat& setTo(Scalar s, Stream& stream);
 | 
						|
 | 
						|
    //! sets some of the GpuMat elements to s, according to the mask (Blocking call)
 | 
						|
    CV_WRAP GpuMat& setTo(Scalar s, InputArray mask);
 | 
						|
 | 
						|
    //! sets some of the GpuMat elements to s, according to the mask (Non-Blocking call)
 | 
						|
    CV_WRAP GpuMat& setTo(Scalar s, InputArray mask, Stream& stream);
 | 
						|
 | 
						|
    //! converts GpuMat to another datatype (Blocking call)
 | 
						|
    CV_WRAP void convertTo(OutputArray dst, int rtype) const;
 | 
						|
 | 
						|
    //! converts GpuMat to another datatype (Non-Blocking call)
 | 
						|
    CV_WRAP void convertTo(OutputArray dst, int rtype, Stream& stream) const;
 | 
						|
 | 
						|
    //! converts GpuMat to another datatype with scaling (Blocking call)
 | 
						|
    CV_WRAP void convertTo(OutputArray dst, int rtype, double alpha, double beta = 0.0) const;
 | 
						|
 | 
						|
    //! converts GpuMat to another datatype with scaling (Non-Blocking call)
 | 
						|
    CV_WRAP void convertTo(OutputArray dst, int rtype, double alpha, Stream& stream) const;
 | 
						|
 | 
						|
    //! converts GpuMat to another datatype with scaling (Non-Blocking call)
 | 
						|
    CV_WRAP void convertTo(OutputArray dst, int rtype, double alpha, double beta, Stream& stream) const;
 | 
						|
 | 
						|
    CV_WRAP void assignTo(GpuMat& m, int type = -1) const;
 | 
						|
 | 
						|
    //! returns pointer to y-th row
 | 
						|
    uchar* ptr(int y = 0);
 | 
						|
    const uchar* ptr(int y = 0) const;
 | 
						|
 | 
						|
    //! template version of the above method
 | 
						|
    template<typename _Tp> _Tp* ptr(int y = 0);
 | 
						|
    template<typename _Tp> const _Tp* ptr(int y = 0) const;
 | 
						|
 | 
						|
    template <typename _Tp> operator PtrStepSz<_Tp>() const;
 | 
						|
    template <typename _Tp> operator PtrStep<_Tp>() const;
 | 
						|
 | 
						|
    //! returns a new GpuMat header for the specified row
 | 
						|
    CV_WRAP GpuMat row(int y) const;
 | 
						|
 | 
						|
    //! returns a new GpuMat header for the specified column
 | 
						|
    CV_WRAP GpuMat col(int x) const;
 | 
						|
 | 
						|
    //! ... for the specified row span
 | 
						|
    CV_WRAP GpuMat rowRange(int startrow, int endrow) const;
 | 
						|
    CV_WRAP GpuMat rowRange(Range r) const;
 | 
						|
 | 
						|
    //! ... for the specified column span
 | 
						|
    CV_WRAP GpuMat colRange(int startcol, int endcol) const;
 | 
						|
    CV_WRAP GpuMat colRange(Range r) const;
 | 
						|
 | 
						|
    //! extracts a rectangular sub-GpuMat (this is a generalized form of row, rowRange etc.)
 | 
						|
    GpuMat operator ()(Range rowRange, Range colRange) const;
 | 
						|
    GpuMat operator ()(Rect roi) const;
 | 
						|
 | 
						|
    //! creates alternative GpuMat header for the same data, with different
 | 
						|
    //! number of channels and/or different number of rows
 | 
						|
    CV_WRAP GpuMat reshape(int cn, int rows = 0) const;
 | 
						|
 | 
						|
    //! locates GpuMat header within a parent GpuMat
 | 
						|
    CV_WRAP void locateROI(Size& wholeSize, Point& ofs) const;
 | 
						|
 | 
						|
    //! moves/resizes the current GpuMat ROI inside the parent GpuMat
 | 
						|
    CV_WRAP GpuMat& adjustROI(int dtop, int dbottom, int dleft, int dright);
 | 
						|
 | 
						|
    //! returns true iff the GpuMat data is continuous
 | 
						|
    //! (i.e. when there are no gaps between successive rows)
 | 
						|
    CV_WRAP bool isContinuous() const;
 | 
						|
 | 
						|
    //! returns element size in bytes
 | 
						|
    CV_WRAP size_t elemSize() const;
 | 
						|
 | 
						|
    //! returns the size of element channel in bytes
 | 
						|
    CV_WRAP size_t elemSize1() const;
 | 
						|
 | 
						|
    //! returns element type
 | 
						|
    CV_WRAP int type() const;
 | 
						|
 | 
						|
    //! returns element type
 | 
						|
    CV_WRAP int depth() const;
 | 
						|
 | 
						|
    //! returns number of channels
 | 
						|
    CV_WRAP int channels() const;
 | 
						|
 | 
						|
    //! returns step/elemSize1()
 | 
						|
    CV_WRAP size_t step1() const;
 | 
						|
 | 
						|
    //! returns GpuMat size : width == number of columns, height == number of rows
 | 
						|
    CV_WRAP Size size() const;
 | 
						|
 | 
						|
    //! returns true if GpuMat data is NULL
 | 
						|
    CV_WRAP bool empty() const;
 | 
						|
 | 
						|
    // returns pointer to cuda memory
 | 
						|
    CV_WRAP void* cudaPtr() const;
 | 
						|
 | 
						|
    //! internal use method: updates the continuity flag
 | 
						|
    CV_WRAP void updateContinuityFlag();
 | 
						|
 | 
						|
    /*! includes several bit-fields:
 | 
						|
    - the magic signature
 | 
						|
    - continuity flag
 | 
						|
    - depth
 | 
						|
    - number of channels
 | 
						|
    */
 | 
						|
    int flags;
 | 
						|
 | 
						|
    //! the number of rows and columns
 | 
						|
    int rows, cols;
 | 
						|
 | 
						|
    //! a distance between successive rows in bytes; includes the gap if any
 | 
						|
    CV_PROP size_t step;
 | 
						|
 | 
						|
    //! pointer to the data
 | 
						|
    uchar* data;
 | 
						|
 | 
						|
    //! pointer to the reference counter;
 | 
						|
    //! when GpuMat points to user-allocated data, the pointer is NULL
 | 
						|
    int* refcount;
 | 
						|
 | 
						|
    //! helper fields used in locateROI and adjustROI
 | 
						|
    uchar* datastart;
 | 
						|
    const uchar* dataend;
 | 
						|
 | 
						|
    //! allocator
 | 
						|
    Allocator* allocator;
 | 
						|
};
 | 
						|
 | 
						|
struct CV_EXPORTS_W GpuData
 | 
						|
{
 | 
						|
    explicit GpuData(size_t _size);
 | 
						|
     ~GpuData();
 | 
						|
 | 
						|
    GpuData(const GpuData&) = delete;
 | 
						|
    GpuData& operator=(const GpuData&) = delete;
 | 
						|
 | 
						|
    GpuData(GpuData&&) = delete;
 | 
						|
    GpuData& operator=(GpuData&&) = delete;
 | 
						|
 | 
						|
    uchar* data;
 | 
						|
    size_t size;
 | 
						|
};
 | 
						|
 | 
						|
class CV_EXPORTS_W GpuMatND
 | 
						|
{
 | 
						|
public:
 | 
						|
    using SizeArray = std::vector<int>;
 | 
						|
    using StepArray = std::vector<size_t>;
 | 
						|
    using IndexArray = std::vector<int>;
 | 
						|
 | 
						|
    //! destructor
 | 
						|
    ~GpuMatND();
 | 
						|
 | 
						|
    //! default constructor
 | 
						|
    GpuMatND();
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param size Array of integers specifying an n-dimensional array shape.
 | 
						|
    @param type Array type. Use CV_8UC1, ..., CV_16FC4 to create 1-4 channel matrices, or
 | 
						|
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
 | 
						|
    */
 | 
						|
    GpuMatND(SizeArray size, int type);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param size Array of integers specifying an n-dimensional array shape.
 | 
						|
    @param type Array type. Use CV_8UC1, ..., CV_16FC4 to create 1-4 channel matrices, or
 | 
						|
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
 | 
						|
    @param data Pointer to the user data. Matrix constructors that take data and step parameters do not
 | 
						|
    allocate matrix data. Instead, they just initialize the matrix header that points to the specified
 | 
						|
    data, which means that no data is copied. This operation is very efficient and can be used to
 | 
						|
    process external data using OpenCV functions. The external data is not automatically deallocated, so
 | 
						|
    you should take care of it.
 | 
						|
    @param step Array of _size.size()-1 steps in case of a multi-dimensional array (the last step is always
 | 
						|
    set to the element size). If not specified, the matrix is assumed to be continuous.
 | 
						|
    */
 | 
						|
    GpuMatND(SizeArray size, int type, void* data, StepArray step = StepArray());
 | 
						|
 | 
						|
    /** @brief Allocates GPU memory.
 | 
						|
    Suppose there is some GPU memory already allocated. In that case, this method may choose to reuse that
 | 
						|
    GPU memory under the specific condition: it must be of the same size and type, not externally allocated,
 | 
						|
    the GPU memory is continuous(i.e., isContinuous() is true), and is not a sub-matrix of another GpuMatND
 | 
						|
    (i.e., isSubmatrix() is false). In other words, this method guarantees that the GPU memory allocated by
 | 
						|
    this method is always continuous and is not a sub-region of another GpuMatND.
 | 
						|
    */
 | 
						|
    void create(SizeArray size, int type);
 | 
						|
 | 
						|
    void release();
 | 
						|
 | 
						|
    void swap(GpuMatND& m) noexcept;
 | 
						|
 | 
						|
    /** @brief Creates a full copy of the array and the underlying data.
 | 
						|
    The method creates a full copy of the array. It mimics the behavior of Mat::clone(), i.e.
 | 
						|
    the original step is not taken into account. So, the array copy is a continuous array
 | 
						|
    occupying total()\*elemSize() bytes.
 | 
						|
    */
 | 
						|
    GpuMatND clone() const;
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    This overload is non-blocking, so it may return even if the copy operation is not finished.
 | 
						|
    */
 | 
						|
    GpuMatND clone(Stream& stream) const;
 | 
						|
 | 
						|
    /** @brief Extracts a sub-matrix.
 | 
						|
    The operator makes a new header for the specified sub-array of \*this.
 | 
						|
    The operator is an O(1) operation, that is, no matrix data is copied.
 | 
						|
    @param ranges Array of selected ranges along each dimension.
 | 
						|
    */
 | 
						|
    GpuMatND operator()(const std::vector<Range>& ranges) const;
 | 
						|
 | 
						|
    /** @brief Creates a GpuMat header for a 2D plane part of an n-dim matrix.
 | 
						|
    @note The returned GpuMat is constructed with the constructor for user-allocated data.
 | 
						|
    That is, It does not perform reference counting.
 | 
						|
    @note This function does not increment this GpuMatND's reference counter.
 | 
						|
    */
 | 
						|
    GpuMat createGpuMatHeader(IndexArray idx, Range rowRange, Range colRange) const;
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    Creates a GpuMat header if this GpuMatND is effectively 2D.
 | 
						|
    @note The returned GpuMat is constructed with the constructor for user-allocated data.
 | 
						|
    That is, It does not perform reference counting.
 | 
						|
    @note This function does not increment this GpuMatND's reference counter.
 | 
						|
    */
 | 
						|
    GpuMat createGpuMatHeader() const;
 | 
						|
 | 
						|
    /** @brief Extracts a 2D plane part of an n-dim matrix.
 | 
						|
    It differs from createGpuMatHeader(IndexArray, Range, Range) in that it clones a part of this
 | 
						|
    GpuMatND to the returned GpuMat.
 | 
						|
    @note This operator does not increment this GpuMatND's reference counter;
 | 
						|
    */
 | 
						|
    GpuMat operator()(IndexArray idx, Range rowRange, Range colRange) const;
 | 
						|
 | 
						|
    /** @brief Extracts a 2D plane part of an n-dim matrix if this GpuMatND is effectively 2D.
 | 
						|
    It differs from createGpuMatHeader() in that it clones a part of this GpuMatND.
 | 
						|
    @note This operator does not increment this GpuMatND's reference counter;
 | 
						|
    */
 | 
						|
    operator GpuMat() const;
 | 
						|
 | 
						|
    GpuMatND(const GpuMatND&) = default;
 | 
						|
    GpuMatND& operator=(const GpuMatND&) = default;
 | 
						|
 | 
						|
#if defined(__GNUC__) && __GNUC__ < 5
 | 
						|
    // error: function '...' defaulted on its first declaration with an exception-specification
 | 
						|
    // that differs from the implicit declaration '...'
 | 
						|
 | 
						|
    GpuMatND(GpuMatND&&) = default;
 | 
						|
    GpuMatND& operator=(GpuMatND&&) = default;
 | 
						|
#else
 | 
						|
    GpuMatND(GpuMatND&&) noexcept = default;
 | 
						|
    GpuMatND& operator=(GpuMatND&&) noexcept = default;
 | 
						|
#endif
 | 
						|
 | 
						|
    void upload(InputArray src);
 | 
						|
    void upload(InputArray src, Stream& stream);
 | 
						|
    void download(OutputArray dst) const;
 | 
						|
    void download(OutputArray dst, Stream& stream) const;
 | 
						|
 | 
						|
    //! returns true iff the GpuMatND data is continuous
 | 
						|
    //! (i.e. when there are no gaps between successive rows)
 | 
						|
    bool isContinuous() const;
 | 
						|
 | 
						|
    //! returns true if the matrix is a sub-matrix of another matrix
 | 
						|
    bool isSubmatrix() const;
 | 
						|
 | 
						|
    //! returns element size in bytes
 | 
						|
    size_t elemSize() const;
 | 
						|
 | 
						|
    //! returns the size of element channel in bytes
 | 
						|
    size_t elemSize1() const;
 | 
						|
 | 
						|
    //! returns true if data is null
 | 
						|
    bool empty() const;
 | 
						|
 | 
						|
    //! returns true if not empty and points to external(user-allocated) gpu memory
 | 
						|
    bool external() const;
 | 
						|
 | 
						|
    //! returns pointer to the first byte of the GPU memory
 | 
						|
    uchar* getDevicePtr() const;
 | 
						|
 | 
						|
    //! returns the total number of array elements
 | 
						|
    size_t total() const;
 | 
						|
 | 
						|
    //! returns the size of underlying memory in bytes
 | 
						|
    size_t totalMemSize() const;
 | 
						|
 | 
						|
    //! returns element type
 | 
						|
    int type() const;
 | 
						|
 | 
						|
private:
 | 
						|
    //! internal use
 | 
						|
    void setFields(SizeArray size, int type, StepArray step = StepArray());
 | 
						|
 | 
						|
public:
 | 
						|
    /*! includes several bit-fields:
 | 
						|
    - the magic signature
 | 
						|
    - continuity flag
 | 
						|
    - depth
 | 
						|
    - number of channels
 | 
						|
    */
 | 
						|
    int flags;
 | 
						|
 | 
						|
    //! matrix dimensionality
 | 
						|
    int dims;
 | 
						|
 | 
						|
    //! shape of this array
 | 
						|
    SizeArray size;
 | 
						|
 | 
						|
    /*! step values
 | 
						|
    Their semantics is identical to the semantics of step for Mat.
 | 
						|
    */
 | 
						|
    StepArray step;
 | 
						|
 | 
						|
private:
 | 
						|
    /*! internal use
 | 
						|
    If this GpuMatND holds external memory, this is empty.
 | 
						|
    */
 | 
						|
    std::shared_ptr<GpuData> data_;
 | 
						|
 | 
						|
    /*! internal use
 | 
						|
    If this GpuMatND manages memory with reference counting, this value is
 | 
						|
    always equal to data_->data. If this GpuMatND holds external memory,
 | 
						|
    data_ is empty and data points to the external memory.
 | 
						|
    */
 | 
						|
    uchar* data;
 | 
						|
 | 
						|
    /*! internal use
 | 
						|
    If this GpuMatND is a sub-matrix of a larger matrix, this value is the
 | 
						|
    difference of the first byte between the sub-matrix and the whole matrix.
 | 
						|
    */
 | 
						|
    size_t offset;
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Creates a continuous matrix.
 | 
						|
 | 
						|
@param rows Row count.
 | 
						|
@param cols Column count.
 | 
						|
@param type Type of the matrix.
 | 
						|
@param arr Destination matrix. This parameter changes only if it has a proper type and area (
 | 
						|
\f$\texttt{rows} \times \texttt{cols}\f$ ).
 | 
						|
 | 
						|
Matrix is called continuous if its elements are stored continuously, that is, without gaps at the
 | 
						|
end of each row.
 | 
						|
 */
 | 
						|
CV_EXPORTS_W void createContinuous(int rows, int cols, int type, OutputArray arr);
 | 
						|
 | 
						|
/** @brief Ensures that the size of a matrix is big enough and the matrix has a proper type.
 | 
						|
 | 
						|
@param rows Minimum desired number of rows.
 | 
						|
@param cols Minimum desired number of columns.
 | 
						|
@param type Desired matrix type.
 | 
						|
@param arr Destination matrix.
 | 
						|
 | 
						|
The function does not reallocate memory if the matrix has proper attributes already.
 | 
						|
 */
 | 
						|
CV_EXPORTS_W void ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr);
 | 
						|
 | 
						|
/** @brief BufferPool for use with CUDA streams
 | 
						|
 | 
						|
BufferPool utilizes Stream's allocator to create new buffers for GpuMat's. It is
 | 
						|
only useful when enabled with #setBufferPoolUsage.
 | 
						|
 | 
						|
@code
 | 
						|
    setBufferPoolUsage(true);
 | 
						|
@endcode
 | 
						|
 | 
						|
@note #setBufferPoolUsage must be called \em before any Stream declaration.
 | 
						|
 | 
						|
Users may specify custom allocator for Stream and may implement their own stream based
 | 
						|
functions utilizing the same underlying GPU memory management.
 | 
						|
 | 
						|
If custom allocator is not specified, BufferPool utilizes StackAllocator by
 | 
						|
default. StackAllocator allocates a chunk of GPU device memory beforehand,
 | 
						|
and when GpuMat is declared later on, it is given the pre-allocated memory.
 | 
						|
This kind of strategy reduces the number of calls for memory allocating APIs
 | 
						|
such as cudaMalloc or cudaMallocPitch.
 | 
						|
 | 
						|
Below is an example that utilizes BufferPool with StackAllocator:
 | 
						|
 | 
						|
@code
 | 
						|
    #include <opencv2/opencv.hpp>
 | 
						|
 | 
						|
    using namespace cv;
 | 
						|
    using namespace cv::cuda
 | 
						|
 | 
						|
    int main()
 | 
						|
    {
 | 
						|
        setBufferPoolUsage(true);                               // Tell OpenCV that we are going to utilize BufferPool
 | 
						|
        setBufferPoolConfig(getDevice(), 1024 * 1024 * 64, 2);  // Allocate 64 MB, 2 stacks (default is 10 MB, 5 stacks)
 | 
						|
 | 
						|
        Stream stream1, stream2;                                // Each stream uses 1 stack
 | 
						|
        BufferPool pool1(stream1), pool2(stream2);
 | 
						|
 | 
						|
        GpuMat d_src1 = pool1.getBuffer(4096, 4096, CV_8UC1);   // 16MB
 | 
						|
        GpuMat d_dst1 = pool1.getBuffer(4096, 4096, CV_8UC3);   // 48MB, pool1 is now full
 | 
						|
 | 
						|
        GpuMat d_src2 = pool2.getBuffer(1024, 1024, CV_8UC1);   // 1MB
 | 
						|
        GpuMat d_dst2 = pool2.getBuffer(1024, 1024, CV_8UC3);   // 3MB
 | 
						|
 | 
						|
        cvtColor(d_src1, d_dst1, CV_GRAY2BGR, 0, stream1);
 | 
						|
        cvtColor(d_src2, d_dst2, CV_GRAY2BGR, 0, stream2);
 | 
						|
    }
 | 
						|
@endcode
 | 
						|
 | 
						|
If we allocate another GpuMat on pool1 in the above example, it will be carried out by
 | 
						|
the DefaultAllocator since the stack for pool1 is full.
 | 
						|
 | 
						|
@code
 | 
						|
    GpuMat d_add1 = pool1.getBuffer(1024, 1024, CV_8UC1);   // Stack for pool1 is full, memory is allocated with DefaultAllocator
 | 
						|
@endcode
 | 
						|
 | 
						|
If a third stream is declared in the above example, allocating with #getBuffer
 | 
						|
within that stream will also be carried out by the DefaultAllocator because we've run out of
 | 
						|
stacks.
 | 
						|
 | 
						|
@code
 | 
						|
    Stream stream3;                                         // Only 2 stacks were allocated, we've run out of stacks
 | 
						|
    BufferPool pool3(stream3);
 | 
						|
    GpuMat d_src3 = pool3.getBuffer(1024, 1024, CV_8UC1);   // Memory is allocated with DefaultAllocator
 | 
						|
@endcode
 | 
						|
 | 
						|
@warning When utilizing StackAllocator, deallocation order is important.
 | 
						|
 | 
						|
Just like a stack, deallocation must be done in LIFO order. Below is an example of
 | 
						|
erroneous usage that violates LIFO rule. If OpenCV is compiled in Debug mode, this
 | 
						|
sample code will emit CV_Assert error.
 | 
						|
 | 
						|
@code
 | 
						|
    int main()
 | 
						|
    {
 | 
						|
        setBufferPoolUsage(true);                               // Tell OpenCV that we are going to utilize BufferPool
 | 
						|
        Stream stream;                                          // A default size (10 MB) stack is allocated to this stream
 | 
						|
        BufferPool pool(stream);
 | 
						|
 | 
						|
        GpuMat mat1 = pool.getBuffer(1024, 1024, CV_8UC1);      // Allocate mat1 (1MB)
 | 
						|
        GpuMat mat2 = pool.getBuffer(1024, 1024, CV_8UC1);      // Allocate mat2 (1MB)
 | 
						|
 | 
						|
        mat1.release();                                         // erroneous usage : mat2 must be deallocated before mat1
 | 
						|
    }
 | 
						|
@endcode
 | 
						|
 | 
						|
Since C++ local variables are destroyed in the reverse order of construction,
 | 
						|
the code sample below satisfies the LIFO rule. Local GpuMat's are deallocated
 | 
						|
and the corresponding memory is automatically returned to the pool for later usage.
 | 
						|
 | 
						|
@code
 | 
						|
    int main()
 | 
						|
    {
 | 
						|
        setBufferPoolUsage(true);                               // Tell OpenCV that we are going to utilize BufferPool
 | 
						|
        setBufferPoolConfig(getDevice(), 1024 * 1024 * 64, 2);  // Allocate 64 MB, 2 stacks (default is 10 MB, 5 stacks)
 | 
						|
 | 
						|
        Stream stream1, stream2;                                // Each stream uses 1 stack
 | 
						|
        BufferPool pool1(stream1), pool2(stream2);
 | 
						|
 | 
						|
        for (int i = 0; i < 10; i++)
 | 
						|
        {
 | 
						|
            GpuMat d_src1 = pool1.getBuffer(4096, 4096, CV_8UC1);   // 16MB
 | 
						|
            GpuMat d_dst1 = pool1.getBuffer(4096, 4096, CV_8UC3);   // 48MB, pool1 is now full
 | 
						|
 | 
						|
            GpuMat d_src2 = pool2.getBuffer(1024, 1024, CV_8UC1);   // 1MB
 | 
						|
            GpuMat d_dst2 = pool2.getBuffer(1024, 1024, CV_8UC3);   // 3MB
 | 
						|
 | 
						|
            d_src1.setTo(Scalar(i), stream1);
 | 
						|
            d_src2.setTo(Scalar(i), stream2);
 | 
						|
 | 
						|
            cvtColor(d_src1, d_dst1, CV_GRAY2BGR, 0, stream1);
 | 
						|
            cvtColor(d_src2, d_dst2, CV_GRAY2BGR, 0, stream2);
 | 
						|
                                                                    // The order of destruction of the local variables is:
 | 
						|
                                                                    //   d_dst2 => d_src2 => d_dst1 => d_src1
 | 
						|
                                                                    // LIFO rule is satisfied, this code runs without error
 | 
						|
        }
 | 
						|
    }
 | 
						|
@endcode
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W BufferPool
 | 
						|
{
 | 
						|
public:
 | 
						|
 | 
						|
    //! Gets the BufferPool for the given stream.
 | 
						|
    explicit BufferPool(Stream& stream);
 | 
						|
 | 
						|
    //! Allocates a new GpuMat of given size and type.
 | 
						|
    CV_WRAP GpuMat getBuffer(int rows, int cols, int type);
 | 
						|
 | 
						|
    //! Allocates a new GpuMat of given size and type.
 | 
						|
    CV_WRAP GpuMat getBuffer(Size size, int type) { return getBuffer(size.height, size.width, type); }
 | 
						|
 | 
						|
    //! Returns the allocator associated with the stream.
 | 
						|
    CV_WRAP Ptr<GpuMat::Allocator> getAllocator() const { return allocator_; }
 | 
						|
 | 
						|
private:
 | 
						|
    Ptr<GpuMat::Allocator> allocator_;
 | 
						|
};
 | 
						|
 | 
						|
//! BufferPool management (must be called before Stream creation)
 | 
						|
CV_EXPORTS_W void setBufferPoolUsage(bool on);
 | 
						|
CV_EXPORTS_W void setBufferPoolConfig(int deviceId, size_t stackSize, int stackCount);
 | 
						|
 | 
						|
//===================================================================================
 | 
						|
// HostMem
 | 
						|
//===================================================================================
 | 
						|
 | 
						|
/** @brief Class with reference counting wrapping special memory type allocation functions from CUDA.
 | 
						|
 | 
						|
Its interface is also Mat-like but with additional memory type parameters.
 | 
						|
 | 
						|
-   **PAGE_LOCKED** sets a page locked memory type used commonly for fast and asynchronous
 | 
						|
    uploading/downloading data from/to GPU.
 | 
						|
-   **SHARED** specifies a zero copy memory allocation that enables mapping the host memory to GPU
 | 
						|
    address space, if supported.
 | 
						|
-   **WRITE_COMBINED** sets the write combined buffer that is not cached by CPU. Such buffers are
 | 
						|
    used to supply GPU with data when GPU only reads it. The advantage is a better CPU cache
 | 
						|
    utilization.
 | 
						|
 | 
						|
@note Allocation size of such memory types is usually limited. For more details, see *CUDA 2.2
 | 
						|
Pinned Memory APIs* document or *CUDA C Programming Guide*.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W HostMem
 | 
						|
{
 | 
						|
public:
 | 
						|
    enum AllocType { PAGE_LOCKED = 1, SHARED = 2, WRITE_COMBINED = 4 };
 | 
						|
 | 
						|
    static MatAllocator* getAllocator(HostMem::AllocType alloc_type = HostMem::AllocType::PAGE_LOCKED);
 | 
						|
 | 
						|
    CV_WRAP explicit HostMem(HostMem::AllocType alloc_type = HostMem::AllocType::PAGE_LOCKED);
 | 
						|
 | 
						|
    HostMem(const HostMem& m);
 | 
						|
 | 
						|
    CV_WRAP HostMem(int rows, int cols, int type, HostMem::AllocType alloc_type = HostMem::AllocType::PAGE_LOCKED);
 | 
						|
    CV_WRAP HostMem(Size size, int type, HostMem::AllocType alloc_type = HostMem::AllocType::PAGE_LOCKED);
 | 
						|
 | 
						|
    //! creates from host memory with coping data
 | 
						|
    CV_WRAP explicit HostMem(InputArray arr, HostMem::AllocType alloc_type = HostMem::AllocType::PAGE_LOCKED);
 | 
						|
 | 
						|
    ~HostMem();
 | 
						|
 | 
						|
    HostMem& operator =(const HostMem& m);
 | 
						|
 | 
						|
    //! swaps with other smart pointer
 | 
						|
    CV_WRAP void swap(HostMem& b);
 | 
						|
 | 
						|
    //! returns deep copy of the matrix, i.e. the data is copied
 | 
						|
    CV_WRAP HostMem clone() const;
 | 
						|
 | 
						|
    //! allocates new matrix data unless the matrix already has specified size and type.
 | 
						|
    CV_WRAP void create(int rows, int cols, int type);
 | 
						|
    void create(Size size, int type);
 | 
						|
 | 
						|
    //! creates alternative HostMem header for the same data, with different
 | 
						|
    //! number of channels and/or different number of rows
 | 
						|
    CV_WRAP HostMem reshape(int cn, int rows = 0) const;
 | 
						|
 | 
						|
    //! decrements reference counter and released memory if needed.
 | 
						|
    void release();
 | 
						|
 | 
						|
    //! returns matrix header with disabled reference counting for HostMem data.
 | 
						|
    CV_WRAP Mat createMatHeader() const;
 | 
						|
 | 
						|
    /** @brief Maps CPU memory to GPU address space and creates the cuda::GpuMat header without reference counting
 | 
						|
    for it.
 | 
						|
 | 
						|
    This can be done only if memory was allocated with the SHARED flag and if it is supported by the
 | 
						|
    hardware. Laptops often share video and CPU memory, so address spaces can be mapped, which
 | 
						|
    eliminates an extra copy.
 | 
						|
     */
 | 
						|
    GpuMat createGpuMatHeader() const;
 | 
						|
 | 
						|
    // Please see cv::Mat for descriptions
 | 
						|
    CV_WRAP bool isContinuous() const;
 | 
						|
    CV_WRAP size_t elemSize() const;
 | 
						|
    CV_WRAP size_t elemSize1() const;
 | 
						|
    CV_WRAP int type() const;
 | 
						|
    CV_WRAP int depth() const;
 | 
						|
    CV_WRAP int channels() const;
 | 
						|
    CV_WRAP size_t step1() const;
 | 
						|
    CV_WRAP Size size() const;
 | 
						|
    CV_WRAP bool empty() const;
 | 
						|
 | 
						|
    // Please see cv::Mat for descriptions
 | 
						|
    int flags;
 | 
						|
    int rows, cols;
 | 
						|
    CV_PROP size_t step;
 | 
						|
 | 
						|
    uchar* data;
 | 
						|
    int* refcount;
 | 
						|
 | 
						|
    uchar* datastart;
 | 
						|
    const uchar* dataend;
 | 
						|
 | 
						|
    AllocType alloc_type;
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Page-locks the memory of matrix and maps it for the device(s).
 | 
						|
 | 
						|
@param m Input matrix.
 | 
						|
 */
 | 
						|
CV_EXPORTS_W void registerPageLocked(Mat& m);
 | 
						|
 | 
						|
/** @brief Unmaps the memory of matrix and makes it pageable again.
 | 
						|
 | 
						|
@param m Input matrix.
 | 
						|
 */
 | 
						|
CV_EXPORTS_W void unregisterPageLocked(Mat& m);
 | 
						|
 | 
						|
//===================================================================================
 | 
						|
// Stream
 | 
						|
//===================================================================================
 | 
						|
 | 
						|
/** @brief This class encapsulates a queue of asynchronous calls.
 | 
						|
 | 
						|
@note Currently, you may face problems if an operation is enqueued twice with different data. Some
 | 
						|
functions use the constant GPU memory, and next call may update the memory before the previous one
 | 
						|
has been finished. But calling different operations asynchronously is safe because each operation
 | 
						|
has its own constant buffer. Memory copy/upload/download/set operations to the buffers you hold are
 | 
						|
also safe.
 | 
						|
 | 
						|
@note The Stream class is not thread-safe. Please use different Stream objects for different CPU threads.
 | 
						|
 | 
						|
@code
 | 
						|
void thread1()
 | 
						|
{
 | 
						|
    cv::cuda::Stream stream1;
 | 
						|
    cv::cuda::func1(..., stream1);
 | 
						|
}
 | 
						|
 | 
						|
void thread2()
 | 
						|
{
 | 
						|
    cv::cuda::Stream stream2;
 | 
						|
    cv::cuda::func2(..., stream2);
 | 
						|
}
 | 
						|
@endcode
 | 
						|
 | 
						|
@note By default all CUDA routines are launched in Stream::Null() object, if the stream is not specified by user.
 | 
						|
In multi-threading environment the stream objects must be passed explicitly (see previous note).
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W Stream
 | 
						|
{
 | 
						|
    typedef void (Stream::*bool_type)() const;
 | 
						|
    void this_type_does_not_support_comparisons() const {}
 | 
						|
 | 
						|
public:
 | 
						|
    typedef void (*StreamCallback)(int status, void* userData);
 | 
						|
 | 
						|
    //! creates a new asynchronous stream
 | 
						|
    CV_WRAP Stream();
 | 
						|
 | 
						|
    //! creates a new asynchronous stream with custom allocator
 | 
						|
    CV_WRAP Stream(const Ptr<GpuMat::Allocator>& allocator);
 | 
						|
 | 
						|
    /** @brief creates a new Stream using the cudaFlags argument to determine the behaviors of the stream
 | 
						|
 | 
						|
    @note The cudaFlags parameter is passed to the underlying api cudaStreamCreateWithFlags() and
 | 
						|
    supports the same parameter values.
 | 
						|
    @code
 | 
						|
        // creates an OpenCV cuda::Stream that manages an asynchronous, non-blocking,
 | 
						|
        // non-default CUDA stream
 | 
						|
        cv::cuda::Stream cvStream(cudaStreamNonBlocking);
 | 
						|
    @endcode
 | 
						|
     */
 | 
						|
    CV_WRAP Stream(const size_t cudaFlags);
 | 
						|
 | 
						|
    /** @brief Returns true if the current stream queue is finished. Otherwise, it returns false.
 | 
						|
    */
 | 
						|
    CV_WRAP bool queryIfComplete() const;
 | 
						|
 | 
						|
    /** @brief Blocks the current CPU thread until all operations in the stream are complete.
 | 
						|
    */
 | 
						|
    CV_WRAP void waitForCompletion();
 | 
						|
 | 
						|
    /** @brief Makes a compute stream wait on an event.
 | 
						|
    */
 | 
						|
    CV_WRAP void waitEvent(const Event& event);
 | 
						|
 | 
						|
    /** @brief Adds a callback to be called on the host after all currently enqueued items in the stream have
 | 
						|
    completed.
 | 
						|
 | 
						|
    @note Callbacks must not make any CUDA API calls. Callbacks must not perform any synchronization
 | 
						|
    that may depend on outstanding device work or other callbacks that are not mandated to run earlier.
 | 
						|
    Callbacks without a mandated order (in independent streams) execute in undefined order and may be
 | 
						|
    serialized.
 | 
						|
     */
 | 
						|
    void enqueueHostCallback(StreamCallback callback, void* userData);
 | 
						|
 | 
						|
    //! return Stream object for default CUDA stream
 | 
						|
    CV_WRAP static Stream& Null();
 | 
						|
 | 
						|
    //! returns true if stream object is not default (!= 0)
 | 
						|
    operator bool_type() const;
 | 
						|
 | 
						|
    //! return Pointer to CUDA stream
 | 
						|
    CV_WRAP void* cudaPtr() const;
 | 
						|
 | 
						|
    class Impl;
 | 
						|
 | 
						|
private:
 | 
						|
    Ptr<Impl> impl_;
 | 
						|
    Stream(const Ptr<Impl>& impl);
 | 
						|
 | 
						|
    friend struct StreamAccessor;
 | 
						|
    friend class BufferPool;
 | 
						|
    friend class DefaultDeviceInitializer;
 | 
						|
};
 | 
						|
 | 
						|
class CV_EXPORTS_W Event
 | 
						|
{
 | 
						|
public:
 | 
						|
    enum CreateFlags
 | 
						|
    {
 | 
						|
        DEFAULT        = 0x00,  /**< Default event flag */
 | 
						|
        BLOCKING_SYNC  = 0x01,  /**< Event uses blocking synchronization */
 | 
						|
        DISABLE_TIMING = 0x02,  /**< Event will not record timing data */
 | 
						|
        INTERPROCESS   = 0x04   /**< Event is suitable for interprocess use. DisableTiming must be set */
 | 
						|
    };
 | 
						|
 | 
						|
    CV_WRAP explicit Event(Event::CreateFlags flags = Event::CreateFlags::DEFAULT);
 | 
						|
 | 
						|
    //! records an event
 | 
						|
    CV_WRAP void record(Stream& stream = Stream::Null());
 | 
						|
 | 
						|
    //! queries an event's status
 | 
						|
    CV_WRAP bool queryIfComplete() const;
 | 
						|
 | 
						|
    //! waits for an event to complete
 | 
						|
    CV_WRAP void waitForCompletion();
 | 
						|
 | 
						|
    //! computes the elapsed time between events
 | 
						|
    CV_WRAP static float elapsedTime(const Event& start, const Event& end);
 | 
						|
 | 
						|
    class Impl;
 | 
						|
 | 
						|
private:
 | 
						|
    Ptr<Impl> impl_;
 | 
						|
    Event(const Ptr<Impl>& impl);
 | 
						|
 | 
						|
    friend struct EventAccessor;
 | 
						|
};
 | 
						|
 | 
						|
//! @} cudacore_struct
 | 
						|
 | 
						|
//===================================================================================
 | 
						|
// Initialization & Info
 | 
						|
//===================================================================================
 | 
						|
 | 
						|
//! @addtogroup cudacore_init
 | 
						|
//! @{
 | 
						|
 | 
						|
/** @brief Returns the number of installed CUDA-enabled devices.
 | 
						|
 | 
						|
Use this function before any other CUDA functions calls. If OpenCV is compiled without CUDA support,
 | 
						|
this function returns 0. If the CUDA driver is not installed, or is incompatible, this function
 | 
						|
returns -1.
 | 
						|
 */
 | 
						|
CV_EXPORTS_W int getCudaEnabledDeviceCount();
 | 
						|
 | 
						|
/** @brief Sets a device and initializes it for the current thread.
 | 
						|
 | 
						|
@param device System index of a CUDA device starting with 0.
 | 
						|
 | 
						|
If the call of this function is omitted, a default device is initialized at the fist CUDA usage.
 | 
						|
 */
 | 
						|
CV_EXPORTS_W void setDevice(int device);
 | 
						|
 | 
						|
/** @brief Returns the current device index set by cuda::setDevice or initialized by default.
 | 
						|
 */
 | 
						|
CV_EXPORTS_W int getDevice();
 | 
						|
 | 
						|
/** @brief Explicitly destroys and cleans up all resources associated with the current device in the current
 | 
						|
process.
 | 
						|
 | 
						|
Any subsequent API call to this device will reinitialize the device.
 | 
						|
 */
 | 
						|
CV_EXPORTS_W void resetDevice();
 | 
						|
 | 
						|
/** @brief Enumeration providing CUDA computing features.
 | 
						|
 */
 | 
						|
enum FeatureSet
 | 
						|
{
 | 
						|
    FEATURE_SET_COMPUTE_10 = 10,
 | 
						|
    FEATURE_SET_COMPUTE_11 = 11,
 | 
						|
    FEATURE_SET_COMPUTE_12 = 12,
 | 
						|
    FEATURE_SET_COMPUTE_13 = 13,
 | 
						|
    FEATURE_SET_COMPUTE_20 = 20,
 | 
						|
    FEATURE_SET_COMPUTE_21 = 21,
 | 
						|
    FEATURE_SET_COMPUTE_30 = 30,
 | 
						|
    FEATURE_SET_COMPUTE_32 = 32,
 | 
						|
    FEATURE_SET_COMPUTE_35 = 35,
 | 
						|
    FEATURE_SET_COMPUTE_50 = 50,
 | 
						|
 | 
						|
    GLOBAL_ATOMICS = FEATURE_SET_COMPUTE_11,
 | 
						|
    SHARED_ATOMICS = FEATURE_SET_COMPUTE_12,
 | 
						|
    NATIVE_DOUBLE = FEATURE_SET_COMPUTE_13,
 | 
						|
    WARP_SHUFFLE_FUNCTIONS = FEATURE_SET_COMPUTE_30,
 | 
						|
    DYNAMIC_PARALLELISM = FEATURE_SET_COMPUTE_35
 | 
						|
};
 | 
						|
 | 
						|
//! checks whether current device supports the given feature
 | 
						|
CV_EXPORTS bool deviceSupports(FeatureSet feature_set);
 | 
						|
 | 
						|
/** @brief Class providing a set of static methods to check what NVIDIA\* card architecture the CUDA module was
 | 
						|
built for.
 | 
						|
 | 
						|
According to the CUDA C Programming Guide Version 3.2: "PTX code produced for some specific compute
 | 
						|
capability can always be compiled to binary code of greater or equal compute capability".
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W TargetArchs
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** @brief The following method checks whether the module was built with the support of the given feature:
 | 
						|
 | 
						|
    @param feature_set Features to be checked. See :ocvcuda::FeatureSet.
 | 
						|
     */
 | 
						|
    static bool builtWith(FeatureSet feature_set);
 | 
						|
 | 
						|
    /** @brief There is a set of methods to check whether the module contains intermediate (PTX) or binary CUDA
 | 
						|
    code for the given architecture(s):
 | 
						|
 | 
						|
    @param major Major compute capability version.
 | 
						|
    @param minor Minor compute capability version.
 | 
						|
     */
 | 
						|
    CV_WRAP static bool has(int major, int minor);
 | 
						|
    CV_WRAP static bool hasPtx(int major, int minor);
 | 
						|
    CV_WRAP static bool hasBin(int major, int minor);
 | 
						|
 | 
						|
    CV_WRAP static bool hasEqualOrLessPtx(int major, int minor);
 | 
						|
    CV_WRAP static bool hasEqualOrGreater(int major, int minor);
 | 
						|
    CV_WRAP static bool hasEqualOrGreaterPtx(int major, int minor);
 | 
						|
    CV_WRAP static bool hasEqualOrGreaterBin(int major, int minor);
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Class providing functionality for querying the specified GPU properties.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W DeviceInfo
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! creates DeviceInfo object for the current GPU
 | 
						|
    CV_WRAP DeviceInfo();
 | 
						|
 | 
						|
    /** @brief The constructors.
 | 
						|
 | 
						|
    @param device_id System index of the CUDA device starting with 0.
 | 
						|
 | 
						|
    Constructs the DeviceInfo object for the specified device. If device_id parameter is missed, it
 | 
						|
    constructs an object for the current device.
 | 
						|
     */
 | 
						|
    CV_WRAP DeviceInfo(int device_id);
 | 
						|
 | 
						|
    /** @brief Returns system index of the CUDA device starting with 0.
 | 
						|
    */
 | 
						|
    CV_WRAP int deviceID() const;
 | 
						|
 | 
						|
    //! ASCII string identifying device
 | 
						|
    const char* name() const;
 | 
						|
 | 
						|
    //! global memory available on device in bytes
 | 
						|
    CV_WRAP size_t totalGlobalMem() const;
 | 
						|
 | 
						|
    //! shared memory available per block in bytes
 | 
						|
    CV_WRAP size_t sharedMemPerBlock() const;
 | 
						|
 | 
						|
    //! 32-bit registers available per block
 | 
						|
    CV_WRAP int regsPerBlock() const;
 | 
						|
 | 
						|
    //! warp size in threads
 | 
						|
    CV_WRAP int warpSize() const;
 | 
						|
 | 
						|
    //! maximum pitch in bytes allowed by memory copies
 | 
						|
    CV_WRAP size_t memPitch() const;
 | 
						|
 | 
						|
    //! maximum number of threads per block
 | 
						|
    CV_WRAP int maxThreadsPerBlock() const;
 | 
						|
 | 
						|
    //! maximum size of each dimension of a block
 | 
						|
    CV_WRAP Vec3i maxThreadsDim() const;
 | 
						|
 | 
						|
    //! maximum size of each dimension of a grid
 | 
						|
    CV_WRAP Vec3i maxGridSize() const;
 | 
						|
 | 
						|
    //! clock frequency in kilohertz
 | 
						|
    CV_WRAP int clockRate() const;
 | 
						|
 | 
						|
    //! constant memory available on device in bytes
 | 
						|
    CV_WRAP size_t totalConstMem() const;
 | 
						|
 | 
						|
    //! major compute capability
 | 
						|
    CV_WRAP int majorVersion() const;
 | 
						|
 | 
						|
    //! minor compute capability
 | 
						|
    CV_WRAP int minorVersion() const;
 | 
						|
 | 
						|
    //! alignment requirement for textures
 | 
						|
    CV_WRAP size_t textureAlignment() const;
 | 
						|
 | 
						|
    //! pitch alignment requirement for texture references bound to pitched memory
 | 
						|
    CV_WRAP size_t texturePitchAlignment() const;
 | 
						|
 | 
						|
    //! number of multiprocessors on device
 | 
						|
    CV_WRAP int multiProcessorCount() const;
 | 
						|
 | 
						|
    //! specified whether there is a run time limit on kernels
 | 
						|
    CV_WRAP bool kernelExecTimeoutEnabled() const;
 | 
						|
 | 
						|
    //! device is integrated as opposed to discrete
 | 
						|
    CV_WRAP bool integrated() const;
 | 
						|
 | 
						|
    //! device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer
 | 
						|
    CV_WRAP bool canMapHostMemory() const;
 | 
						|
 | 
						|
    enum ComputeMode
 | 
						|
    {
 | 
						|
        ComputeModeDefault,         /**< default compute mode (Multiple threads can use cudaSetDevice with this device) */
 | 
						|
        ComputeModeExclusive,       /**< compute-exclusive-thread mode (Only one thread in one process will be able to use cudaSetDevice with this device) */
 | 
						|
        ComputeModeProhibited,      /**< compute-prohibited mode (No threads can use cudaSetDevice with this device) */
 | 
						|
        ComputeModeExclusiveProcess /**< compute-exclusive-process mode (Many threads in one process will be able to use cudaSetDevice with this device) */
 | 
						|
    };
 | 
						|
 | 
						|
    //! compute mode
 | 
						|
    CV_WRAP DeviceInfo::ComputeMode computeMode() const;
 | 
						|
 | 
						|
    //! maximum 1D texture size
 | 
						|
    CV_WRAP int maxTexture1D() const;
 | 
						|
 | 
						|
    //! maximum 1D mipmapped texture size
 | 
						|
    CV_WRAP int maxTexture1DMipmap() const;
 | 
						|
 | 
						|
    //! maximum size for 1D textures bound to linear memory
 | 
						|
    CV_WRAP int maxTexture1DLinear() const;
 | 
						|
 | 
						|
    //! maximum 2D texture dimensions
 | 
						|
    CV_WRAP Vec2i maxTexture2D() const;
 | 
						|
 | 
						|
    //! maximum 2D mipmapped texture dimensions
 | 
						|
    CV_WRAP Vec2i maxTexture2DMipmap() const;
 | 
						|
 | 
						|
    //! maximum dimensions (width, height, pitch) for 2D textures bound to pitched memory
 | 
						|
    CV_WRAP Vec3i maxTexture2DLinear() const;
 | 
						|
 | 
						|
    //! maximum 2D texture dimensions if texture gather operations have to be performed
 | 
						|
    CV_WRAP Vec2i maxTexture2DGather() const;
 | 
						|
 | 
						|
    //! maximum 3D texture dimensions
 | 
						|
    CV_WRAP Vec3i maxTexture3D() const;
 | 
						|
 | 
						|
    //! maximum Cubemap texture dimensions
 | 
						|
    CV_WRAP int maxTextureCubemap() const;
 | 
						|
 | 
						|
    //! maximum 1D layered texture dimensions
 | 
						|
    CV_WRAP Vec2i maxTexture1DLayered() const;
 | 
						|
 | 
						|
    //! maximum 2D layered texture dimensions
 | 
						|
    CV_WRAP Vec3i maxTexture2DLayered() const;
 | 
						|
 | 
						|
    //! maximum Cubemap layered texture dimensions
 | 
						|
    CV_WRAP Vec2i maxTextureCubemapLayered() const;
 | 
						|
 | 
						|
    //! maximum 1D surface size
 | 
						|
    CV_WRAP int maxSurface1D() const;
 | 
						|
 | 
						|
    //! maximum 2D surface dimensions
 | 
						|
    CV_WRAP Vec2i maxSurface2D() const;
 | 
						|
 | 
						|
    //! maximum 3D surface dimensions
 | 
						|
    CV_WRAP Vec3i maxSurface3D() const;
 | 
						|
 | 
						|
    //! maximum 1D layered surface dimensions
 | 
						|
    CV_WRAP Vec2i maxSurface1DLayered() const;
 | 
						|
 | 
						|
    //! maximum 2D layered surface dimensions
 | 
						|
    CV_WRAP Vec3i maxSurface2DLayered() const;
 | 
						|
 | 
						|
    //! maximum Cubemap surface dimensions
 | 
						|
    CV_WRAP int maxSurfaceCubemap() const;
 | 
						|
 | 
						|
    //! maximum Cubemap layered surface dimensions
 | 
						|
    CV_WRAP Vec2i maxSurfaceCubemapLayered() const;
 | 
						|
 | 
						|
    //! alignment requirements for surfaces
 | 
						|
    CV_WRAP size_t surfaceAlignment() const;
 | 
						|
 | 
						|
    //! device can possibly execute multiple kernels concurrently
 | 
						|
    CV_WRAP bool concurrentKernels() const;
 | 
						|
 | 
						|
    //! device has ECC support enabled
 | 
						|
    CV_WRAP bool ECCEnabled() const;
 | 
						|
 | 
						|
    //! PCI bus ID of the device
 | 
						|
    CV_WRAP int pciBusID() const;
 | 
						|
 | 
						|
    //! PCI device ID of the device
 | 
						|
    CV_WRAP int pciDeviceID() const;
 | 
						|
 | 
						|
    //! PCI domain ID of the device
 | 
						|
    CV_WRAP int pciDomainID() const;
 | 
						|
 | 
						|
    //! true if device is a Tesla device using TCC driver, false otherwise
 | 
						|
    CV_WRAP bool tccDriver() const;
 | 
						|
 | 
						|
    //! number of asynchronous engines
 | 
						|
    CV_WRAP int asyncEngineCount() const;
 | 
						|
 | 
						|
    //! device shares a unified address space with the host
 | 
						|
    CV_WRAP bool unifiedAddressing() const;
 | 
						|
 | 
						|
    //! peak memory clock frequency in kilohertz
 | 
						|
    CV_WRAP int memoryClockRate() const;
 | 
						|
 | 
						|
    //! global memory bus width in bits
 | 
						|
    CV_WRAP int memoryBusWidth() const;
 | 
						|
 | 
						|
    //! size of L2 cache in bytes
 | 
						|
    CV_WRAP int l2CacheSize() const;
 | 
						|
 | 
						|
    //! maximum resident threads per multiprocessor
 | 
						|
    CV_WRAP int maxThreadsPerMultiProcessor() const;
 | 
						|
 | 
						|
    //! gets free and total device memory
 | 
						|
    CV_WRAP void queryMemory(size_t& totalMemory, size_t& freeMemory) const;
 | 
						|
    CV_WRAP size_t freeMemory() const;
 | 
						|
    CV_WRAP size_t totalMemory() const;
 | 
						|
 | 
						|
    /** @brief Provides information on CUDA feature support.
 | 
						|
 | 
						|
    @param feature_set Features to be checked. See cuda::FeatureSet.
 | 
						|
 | 
						|
    This function returns true if the device has the specified CUDA feature. Otherwise, it returns false
 | 
						|
     */
 | 
						|
    bool supports(FeatureSet feature_set) const;
 | 
						|
 | 
						|
    /** @brief Checks the CUDA module and device compatibility.
 | 
						|
 | 
						|
    This function returns true if the CUDA module can be run on the specified device. Otherwise, it
 | 
						|
    returns false .
 | 
						|
     */
 | 
						|
    CV_WRAP bool isCompatible() const;
 | 
						|
 | 
						|
private:
 | 
						|
    int device_id_;
 | 
						|
};
 | 
						|
 | 
						|
CV_EXPORTS_W void printCudaDeviceInfo(int device);
 | 
						|
CV_EXPORTS_W void printShortCudaDeviceInfo(int device);
 | 
						|
 | 
						|
/** @brief Converts an array to half precision floating number.
 | 
						|
 | 
						|
@param _src input array.
 | 
						|
@param _dst output array.
 | 
						|
@param stream Stream for the asynchronous version.
 | 
						|
@sa convertFp16
 | 
						|
*/
 | 
						|
CV_EXPORTS void convertFp16(InputArray _src, OutputArray _dst, Stream& stream = Stream::Null());
 | 
						|
 | 
						|
//! @} cudacore_init
 | 
						|
 | 
						|
}} // namespace cv { namespace cuda {
 | 
						|
 | 
						|
 | 
						|
#include "opencv2/core/cuda.inl.hpp"
 | 
						|
 | 
						|
#endif /* OPENCV_CORE_CUDA_HPP */
 |