You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			3767 lines
		
	
	
		
			160 KiB
		
	
	
	
		
			C++
		
	
			
		
		
	
	
			3767 lines
		
	
	
		
			160 KiB
		
	
	
	
		
			C++
		
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                          License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#ifndef OPENCV_CORE_MAT_HPP
 | 
						|
#define OPENCV_CORE_MAT_HPP
 | 
						|
 | 
						|
#ifndef __cplusplus
 | 
						|
#  error mat.hpp header must be compiled as C++
 | 
						|
#endif
 | 
						|
 | 
						|
#include "opencv2/core/matx.hpp"
 | 
						|
#include "opencv2/core/types.hpp"
 | 
						|
 | 
						|
#include "opencv2/core/bufferpool.hpp"
 | 
						|
 | 
						|
#include <type_traits>
 | 
						|
 | 
						|
namespace cv
 | 
						|
{
 | 
						|
 | 
						|
//! @addtogroup core_basic
 | 
						|
//! @{
 | 
						|
 | 
						|
enum AccessFlag { ACCESS_READ=1<<24, ACCESS_WRITE=1<<25,
 | 
						|
    ACCESS_RW=3<<24, ACCESS_MASK=ACCESS_RW, ACCESS_FAST=1<<26 };
 | 
						|
CV_ENUM_FLAGS(AccessFlag)
 | 
						|
__CV_ENUM_FLAGS_BITWISE_AND(AccessFlag, int, AccessFlag)
 | 
						|
 | 
						|
CV__DEBUG_NS_BEGIN
 | 
						|
 | 
						|
class CV_EXPORTS _OutputArray;
 | 
						|
 | 
						|
//////////////////////// Input/Output Array Arguments /////////////////////////////////
 | 
						|
 | 
						|
/** @brief This is the proxy class for passing read-only input arrays into OpenCV functions.
 | 
						|
 | 
						|
It is defined as:
 | 
						|
@code
 | 
						|
    typedef const _InputArray& InputArray;
 | 
						|
@endcode
 | 
						|
where _InputArray is a class that can be constructed from `Mat`, `Mat_<T>`, `Matx<T, m, n>`,
 | 
						|
`std::vector<T>`, `std::vector<std::vector<T> >`, `std::vector<Mat>`, `std::vector<Mat_<T> >`,
 | 
						|
`UMat`, `std::vector<UMat>` or `double`. It can also be constructed from a matrix expression.
 | 
						|
 | 
						|
Since this is mostly implementation-level class, and its interface may change in future versions, we
 | 
						|
do not describe it in details. There are a few key things, though, that should be kept in mind:
 | 
						|
 | 
						|
-   When you see in the reference manual or in OpenCV source code a function that takes
 | 
						|
    InputArray, it means that you can actually pass `Mat`, `Matx`, `vector<T>` etc. (see above the
 | 
						|
    complete list).
 | 
						|
-   Optional input arguments: If some of the input arrays may be empty, pass cv::noArray() (or
 | 
						|
    simply cv::Mat() as you probably did before).
 | 
						|
-   The class is designed solely for passing parameters. That is, normally you *should not*
 | 
						|
    declare class members, local and global variables of this type.
 | 
						|
-   If you want to design your own function or a class method that can operate of arrays of
 | 
						|
    multiple types, you can use InputArray (or OutputArray) for the respective parameters. Inside
 | 
						|
    a function you should use _InputArray::getMat() method to construct a matrix header for the
 | 
						|
    array (without copying data). _InputArray::kind() can be used to distinguish Mat from
 | 
						|
    `vector<>` etc., but normally it is not needed.
 | 
						|
 | 
						|
Here is how you can use a function that takes InputArray :
 | 
						|
@code
 | 
						|
    std::vector<Point2f> vec;
 | 
						|
    // points or a circle
 | 
						|
    for( int i = 0; i < 30; i++ )
 | 
						|
        vec.push_back(Point2f((float)(100 + 30*cos(i*CV_PI*2/5)),
 | 
						|
                              (float)(100 - 30*sin(i*CV_PI*2/5))));
 | 
						|
    cv::transform(vec, vec, cv::Matx23f(0.707, -0.707, 10, 0.707, 0.707, 20));
 | 
						|
@endcode
 | 
						|
That is, we form an STL vector containing points, and apply in-place affine transformation to the
 | 
						|
vector using the 2x3 matrix created inline as `Matx<float, 2, 3>` instance.
 | 
						|
 | 
						|
Here is how such a function can be implemented (for simplicity, we implement a very specific case of
 | 
						|
it, according to the assertion statement inside) :
 | 
						|
@code
 | 
						|
    void myAffineTransform(InputArray _src, OutputArray _dst, InputArray _m)
 | 
						|
    {
 | 
						|
        // get Mat headers for input arrays. This is O(1) operation,
 | 
						|
        // unless _src and/or _m are matrix expressions.
 | 
						|
        Mat src = _src.getMat(), m = _m.getMat();
 | 
						|
        CV_Assert( src.type() == CV_32FC2 && m.type() == CV_32F && m.size() == Size(3, 2) );
 | 
						|
 | 
						|
        // [re]create the output array so that it has the proper size and type.
 | 
						|
        // In case of Mat it calls Mat::create, in case of STL vector it calls vector::resize.
 | 
						|
        _dst.create(src.size(), src.type());
 | 
						|
        Mat dst = _dst.getMat();
 | 
						|
 | 
						|
        for( int i = 0; i < src.rows; i++ )
 | 
						|
            for( int j = 0; j < src.cols; j++ )
 | 
						|
            {
 | 
						|
                Point2f pt = src.at<Point2f>(i, j);
 | 
						|
                dst.at<Point2f>(i, j) = Point2f(m.at<float>(0, 0)*pt.x +
 | 
						|
                                                m.at<float>(0, 1)*pt.y +
 | 
						|
                                                m.at<float>(0, 2),
 | 
						|
                                                m.at<float>(1, 0)*pt.x +
 | 
						|
                                                m.at<float>(1, 1)*pt.y +
 | 
						|
                                                m.at<float>(1, 2));
 | 
						|
            }
 | 
						|
    }
 | 
						|
@endcode
 | 
						|
There is another related type, InputArrayOfArrays, which is currently defined as a synonym for
 | 
						|
InputArray:
 | 
						|
@code
 | 
						|
    typedef InputArray InputArrayOfArrays;
 | 
						|
@endcode
 | 
						|
It denotes function arguments that are either vectors of vectors or vectors of matrices. A separate
 | 
						|
synonym is needed to generate Python/Java etc. wrappers properly. At the function implementation
 | 
						|
level their use is similar, but _InputArray::getMat(idx) should be used to get header for the
 | 
						|
idx-th component of the outer vector and _InputArray::size().area() should be used to find the
 | 
						|
number of components (vectors/matrices) of the outer vector.
 | 
						|
 | 
						|
In general, type support is limited to cv::Mat types. Other types are forbidden.
 | 
						|
But in some cases we need to support passing of custom non-general Mat types, like arrays of cv::KeyPoint, cv::DMatch, etc.
 | 
						|
This data is not intended to be interpreted as an image data, or processed somehow like regular cv::Mat.
 | 
						|
To pass such custom type use rawIn() / rawOut() / rawInOut() wrappers.
 | 
						|
Custom type is wrapped as Mat-compatible `CV_8UC<N>` values (N = sizeof(T), N <= CV_CN_MAX).
 | 
						|
 */
 | 
						|
class CV_EXPORTS _InputArray
 | 
						|
{
 | 
						|
public:
 | 
						|
    enum KindFlag {
 | 
						|
        KIND_SHIFT = 16,
 | 
						|
        FIXED_TYPE = 0x8000 << KIND_SHIFT,
 | 
						|
        FIXED_SIZE = 0x4000 << KIND_SHIFT,
 | 
						|
        KIND_MASK = 31 << KIND_SHIFT,
 | 
						|
 | 
						|
        NONE              = 0 << KIND_SHIFT,
 | 
						|
        MAT               = 1 << KIND_SHIFT,
 | 
						|
        MATX              = 2 << KIND_SHIFT,
 | 
						|
        STD_VECTOR        = 3 << KIND_SHIFT,
 | 
						|
        STD_VECTOR_VECTOR = 4 << KIND_SHIFT,
 | 
						|
        STD_VECTOR_MAT    = 5 << KIND_SHIFT,
 | 
						|
#if OPENCV_ABI_COMPATIBILITY < 500
 | 
						|
        EXPR              = 6 << KIND_SHIFT,  //!< removed: https://github.com/opencv/opencv/pull/17046
 | 
						|
#endif
 | 
						|
        OPENGL_BUFFER     = 7 << KIND_SHIFT,
 | 
						|
        CUDA_HOST_MEM     = 8 << KIND_SHIFT,
 | 
						|
        CUDA_GPU_MAT      = 9 << KIND_SHIFT,
 | 
						|
        UMAT              =10 << KIND_SHIFT,
 | 
						|
        STD_VECTOR_UMAT   =11 << KIND_SHIFT,
 | 
						|
        STD_BOOL_VECTOR   =12 << KIND_SHIFT,
 | 
						|
        STD_VECTOR_CUDA_GPU_MAT = 13 << KIND_SHIFT,
 | 
						|
#if OPENCV_ABI_COMPATIBILITY < 500
 | 
						|
        STD_ARRAY         =14 << KIND_SHIFT,  //!< removed: https://github.com/opencv/opencv/issues/18897
 | 
						|
#endif
 | 
						|
        STD_ARRAY_MAT     =15 << KIND_SHIFT
 | 
						|
    };
 | 
						|
 | 
						|
    _InputArray();
 | 
						|
    _InputArray(int _flags, void* _obj);
 | 
						|
    _InputArray(const Mat& m);
 | 
						|
    _InputArray(const MatExpr& expr);
 | 
						|
    _InputArray(const std::vector<Mat>& vec);
 | 
						|
    template<typename _Tp> _InputArray(const Mat_<_Tp>& m);
 | 
						|
    template<typename _Tp> _InputArray(const std::vector<_Tp>& vec);
 | 
						|
    _InputArray(const std::vector<bool>& vec);
 | 
						|
    template<typename _Tp> _InputArray(const std::vector<std::vector<_Tp> >& vec);
 | 
						|
    _InputArray(const std::vector<std::vector<bool> >&) = delete;  // not supported
 | 
						|
    template<typename _Tp> _InputArray(const std::vector<Mat_<_Tp> >& vec);
 | 
						|
    template<typename _Tp> _InputArray(const _Tp* vec, int n);
 | 
						|
    template<typename _Tp, int m, int n> _InputArray(const Matx<_Tp, m, n>& matx);
 | 
						|
    _InputArray(const double& val);
 | 
						|
    _InputArray(const cuda::GpuMat& d_mat);
 | 
						|
    _InputArray(const std::vector<cuda::GpuMat>& d_mat_array);
 | 
						|
    _InputArray(const ogl::Buffer& buf);
 | 
						|
    _InputArray(const cuda::HostMem& cuda_mem);
 | 
						|
    template<typename _Tp> _InputArray(const cudev::GpuMat_<_Tp>& m);
 | 
						|
    _InputArray(const UMat& um);
 | 
						|
    _InputArray(const std::vector<UMat>& umv);
 | 
						|
 | 
						|
    template<typename _Tp, std::size_t _Nm> _InputArray(const std::array<_Tp, _Nm>& arr);
 | 
						|
    template<std::size_t _Nm> _InputArray(const std::array<Mat, _Nm>& arr);
 | 
						|
 | 
						|
    template<typename _Tp> static _InputArray rawIn(const std::vector<_Tp>& vec);
 | 
						|
    template<typename _Tp, std::size_t _Nm> static _InputArray rawIn(const std::array<_Tp, _Nm>& arr);
 | 
						|
 | 
						|
    Mat getMat(int idx=-1) const;
 | 
						|
    Mat getMat_(int idx=-1) const;
 | 
						|
    UMat getUMat(int idx=-1) const;
 | 
						|
    void getMatVector(std::vector<Mat>& mv) const;
 | 
						|
    void getUMatVector(std::vector<UMat>& umv) const;
 | 
						|
    void getGpuMatVector(std::vector<cuda::GpuMat>& gpumv) const;
 | 
						|
    cuda::GpuMat getGpuMat() const;
 | 
						|
    ogl::Buffer getOGlBuffer() const;
 | 
						|
 | 
						|
    int getFlags() const;
 | 
						|
    void* getObj() const;
 | 
						|
    Size getSz() const;
 | 
						|
 | 
						|
    _InputArray::KindFlag kind() const;
 | 
						|
    int dims(int i=-1) const;
 | 
						|
    int cols(int i=-1) const;
 | 
						|
    int rows(int i=-1) const;
 | 
						|
    Size size(int i=-1) const;
 | 
						|
    int sizend(int* sz, int i=-1) const;
 | 
						|
    bool sameSize(const _InputArray& arr) const;
 | 
						|
    size_t total(int i=-1) const;
 | 
						|
    int type(int i=-1) const;
 | 
						|
    int depth(int i=-1) const;
 | 
						|
    int channels(int i=-1) const;
 | 
						|
    bool isContinuous(int i=-1) const;
 | 
						|
    bool isSubmatrix(int i=-1) const;
 | 
						|
    bool empty() const;
 | 
						|
    void copyTo(const _OutputArray& arr) const;
 | 
						|
    void copyTo(const _OutputArray& arr, const _InputArray & mask) const;
 | 
						|
    size_t offset(int i=-1) const;
 | 
						|
    size_t step(int i=-1) const;
 | 
						|
    bool isMat() const;
 | 
						|
    bool isUMat() const;
 | 
						|
    bool isMatVector() const;
 | 
						|
    bool isUMatVector() const;
 | 
						|
    bool isMatx() const;
 | 
						|
    bool isVector() const;
 | 
						|
    bool isGpuMat() const;
 | 
						|
    bool isGpuMatVector() const;
 | 
						|
    ~_InputArray();
 | 
						|
 | 
						|
protected:
 | 
						|
    int flags;
 | 
						|
    void* obj;
 | 
						|
    Size sz;
 | 
						|
 | 
						|
    void init(int _flags, const void* _obj);
 | 
						|
    void init(int _flags, const void* _obj, Size _sz);
 | 
						|
};
 | 
						|
CV_ENUM_FLAGS(_InputArray::KindFlag)
 | 
						|
__CV_ENUM_FLAGS_BITWISE_AND(_InputArray::KindFlag, int, _InputArray::KindFlag)
 | 
						|
 | 
						|
/** @brief This type is very similar to InputArray except that it is used for input/output and output function
 | 
						|
parameters.
 | 
						|
 | 
						|
Just like with InputArray, OpenCV users should not care about OutputArray, they just pass `Mat`,
 | 
						|
`vector<T>` etc. to the functions. The same limitation as for `InputArray`: *Do not explicitly
 | 
						|
create OutputArray instances* applies here too.
 | 
						|
 | 
						|
If you want to make your function polymorphic (i.e. accept different arrays as output parameters),
 | 
						|
it is also not very difficult. Take the sample above as the reference. Note that
 | 
						|
_OutputArray::create() needs to be called before _OutputArray::getMat(). This way you guarantee
 | 
						|
that the output array is properly allocated.
 | 
						|
 | 
						|
Optional output parameters. If you do not need certain output array to be computed and returned to
 | 
						|
you, pass cv::noArray(), just like you would in the case of optional input array. At the
 | 
						|
implementation level, use _OutputArray::needed() to check if certain output array needs to be
 | 
						|
computed or not.
 | 
						|
 | 
						|
There are several synonyms for OutputArray that are used to assist automatic Python/Java/... wrapper
 | 
						|
generators:
 | 
						|
@code
 | 
						|
    typedef OutputArray OutputArrayOfArrays;
 | 
						|
    typedef OutputArray InputOutputArray;
 | 
						|
    typedef OutputArray InputOutputArrayOfArrays;
 | 
						|
@endcode
 | 
						|
 */
 | 
						|
class CV_EXPORTS _OutputArray : public _InputArray
 | 
						|
{
 | 
						|
public:
 | 
						|
    enum DepthMask
 | 
						|
    {
 | 
						|
        DEPTH_MASK_8U = 1 << CV_8U,
 | 
						|
        DEPTH_MASK_8S = 1 << CV_8S,
 | 
						|
        DEPTH_MASK_16U = 1 << CV_16U,
 | 
						|
        DEPTH_MASK_16S = 1 << CV_16S,
 | 
						|
        DEPTH_MASK_32S = 1 << CV_32S,
 | 
						|
        DEPTH_MASK_32F = 1 << CV_32F,
 | 
						|
        DEPTH_MASK_64F = 1 << CV_64F,
 | 
						|
        DEPTH_MASK_16F = 1 << CV_16F,
 | 
						|
        DEPTH_MASK_ALL = (DEPTH_MASK_64F<<1)-1,
 | 
						|
        DEPTH_MASK_ALL_BUT_8S = DEPTH_MASK_ALL & ~DEPTH_MASK_8S,
 | 
						|
        DEPTH_MASK_ALL_16F = (DEPTH_MASK_16F<<1)-1,
 | 
						|
        DEPTH_MASK_FLT = DEPTH_MASK_32F + DEPTH_MASK_64F
 | 
						|
    };
 | 
						|
 | 
						|
    _OutputArray();
 | 
						|
    _OutputArray(int _flags, void* _obj);
 | 
						|
    _OutputArray(Mat& m);
 | 
						|
    _OutputArray(std::vector<Mat>& vec);
 | 
						|
    _OutputArray(cuda::GpuMat& d_mat);
 | 
						|
    _OutputArray(std::vector<cuda::GpuMat>& d_mat);
 | 
						|
    _OutputArray(ogl::Buffer& buf);
 | 
						|
    _OutputArray(cuda::HostMem& cuda_mem);
 | 
						|
    template<typename _Tp> _OutputArray(cudev::GpuMat_<_Tp>& m);
 | 
						|
    template<typename _Tp> _OutputArray(std::vector<_Tp>& vec);
 | 
						|
    _OutputArray(std::vector<bool>& vec) = delete;  // not supported
 | 
						|
    template<typename _Tp> _OutputArray(std::vector<std::vector<_Tp> >& vec);
 | 
						|
    _OutputArray(std::vector<std::vector<bool> >&) = delete;  // not supported
 | 
						|
    template<typename _Tp> _OutputArray(std::vector<Mat_<_Tp> >& vec);
 | 
						|
    template<typename _Tp> _OutputArray(Mat_<_Tp>& m);
 | 
						|
    template<typename _Tp> _OutputArray(_Tp* vec, int n);
 | 
						|
    template<typename _Tp, int m, int n> _OutputArray(Matx<_Tp, m, n>& matx);
 | 
						|
    _OutputArray(UMat& m);
 | 
						|
    _OutputArray(std::vector<UMat>& vec);
 | 
						|
 | 
						|
    _OutputArray(const Mat& m);
 | 
						|
    _OutputArray(const std::vector<Mat>& vec);
 | 
						|
    _OutputArray(const cuda::GpuMat& d_mat);
 | 
						|
    _OutputArray(const std::vector<cuda::GpuMat>& d_mat);
 | 
						|
    _OutputArray(const ogl::Buffer& buf);
 | 
						|
    _OutputArray(const cuda::HostMem& cuda_mem);
 | 
						|
    template<typename _Tp> _OutputArray(const cudev::GpuMat_<_Tp>& m);
 | 
						|
    template<typename _Tp> _OutputArray(const std::vector<_Tp>& vec);
 | 
						|
    template<typename _Tp> _OutputArray(const std::vector<std::vector<_Tp> >& vec);
 | 
						|
    template<typename _Tp> _OutputArray(const std::vector<Mat_<_Tp> >& vec);
 | 
						|
    template<typename _Tp> _OutputArray(const Mat_<_Tp>& m);
 | 
						|
    template<typename _Tp> _OutputArray(const _Tp* vec, int n);
 | 
						|
    template<typename _Tp, int m, int n> _OutputArray(const Matx<_Tp, m, n>& matx);
 | 
						|
    _OutputArray(const UMat& m);
 | 
						|
    _OutputArray(const std::vector<UMat>& vec);
 | 
						|
 | 
						|
    template<typename _Tp, std::size_t _Nm> _OutputArray(std::array<_Tp, _Nm>& arr);
 | 
						|
    template<typename _Tp, std::size_t _Nm> _OutputArray(const std::array<_Tp, _Nm>& arr);
 | 
						|
    template<std::size_t _Nm> _OutputArray(std::array<Mat, _Nm>& arr);
 | 
						|
    template<std::size_t _Nm> _OutputArray(const std::array<Mat, _Nm>& arr);
 | 
						|
 | 
						|
    template<typename _Tp> static _OutputArray rawOut(std::vector<_Tp>& vec);
 | 
						|
    template<typename _Tp, std::size_t _Nm> static _OutputArray rawOut(std::array<_Tp, _Nm>& arr);
 | 
						|
 | 
						|
    bool fixedSize() const;
 | 
						|
    bool fixedType() const;
 | 
						|
    bool needed() const;
 | 
						|
    Mat& getMatRef(int i=-1) const;
 | 
						|
    UMat& getUMatRef(int i=-1) const;
 | 
						|
    cuda::GpuMat& getGpuMatRef() const;
 | 
						|
    std::vector<cuda::GpuMat>& getGpuMatVecRef() const;
 | 
						|
    ogl::Buffer& getOGlBufferRef() const;
 | 
						|
    cuda::HostMem& getHostMemRef() const;
 | 
						|
    void create(Size sz, int type, int i=-1, bool allowTransposed=false, _OutputArray::DepthMask fixedDepthMask=static_cast<_OutputArray::DepthMask>(0)) const;
 | 
						|
    void create(int rows, int cols, int type, int i=-1, bool allowTransposed=false, _OutputArray::DepthMask fixedDepthMask=static_cast<_OutputArray::DepthMask>(0)) const;
 | 
						|
    void create(int dims, const int* size, int type, int i=-1, bool allowTransposed=false, _OutputArray::DepthMask fixedDepthMask=static_cast<_OutputArray::DepthMask>(0)) const;
 | 
						|
    void createSameSize(const _InputArray& arr, int mtype) const;
 | 
						|
    void release() const;
 | 
						|
    void clear() const;
 | 
						|
    void setTo(const _InputArray& value, const _InputArray & mask = _InputArray()) const;
 | 
						|
 | 
						|
    void assign(const UMat& u) const;
 | 
						|
    void assign(const Mat& m) const;
 | 
						|
 | 
						|
    void assign(const std::vector<UMat>& v) const;
 | 
						|
    void assign(const std::vector<Mat>& v) const;
 | 
						|
 | 
						|
    void move(UMat& u) const;
 | 
						|
    void move(Mat& m) const;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class CV_EXPORTS _InputOutputArray : public _OutputArray
 | 
						|
{
 | 
						|
public:
 | 
						|
    _InputOutputArray();
 | 
						|
    _InputOutputArray(int _flags, void* _obj);
 | 
						|
    _InputOutputArray(Mat& m);
 | 
						|
    _InputOutputArray(std::vector<Mat>& vec);
 | 
						|
    _InputOutputArray(cuda::GpuMat& d_mat);
 | 
						|
    _InputOutputArray(ogl::Buffer& buf);
 | 
						|
    _InputOutputArray(cuda::HostMem& cuda_mem);
 | 
						|
    template<typename _Tp> _InputOutputArray(cudev::GpuMat_<_Tp>& m);
 | 
						|
    template<typename _Tp> _InputOutputArray(std::vector<_Tp>& vec);
 | 
						|
    _InputOutputArray(std::vector<bool>& vec) = delete;  // not supported
 | 
						|
    template<typename _Tp> _InputOutputArray(std::vector<std::vector<_Tp> >& vec);
 | 
						|
    template<typename _Tp> _InputOutputArray(std::vector<Mat_<_Tp> >& vec);
 | 
						|
    template<typename _Tp> _InputOutputArray(Mat_<_Tp>& m);
 | 
						|
    template<typename _Tp> _InputOutputArray(_Tp* vec, int n);
 | 
						|
    template<typename _Tp, int m, int n> _InputOutputArray(Matx<_Tp, m, n>& matx);
 | 
						|
    _InputOutputArray(UMat& m);
 | 
						|
    _InputOutputArray(std::vector<UMat>& vec);
 | 
						|
 | 
						|
    _InputOutputArray(const Mat& m);
 | 
						|
    _InputOutputArray(const std::vector<Mat>& vec);
 | 
						|
    _InputOutputArray(const cuda::GpuMat& d_mat);
 | 
						|
    _InputOutputArray(const std::vector<cuda::GpuMat>& d_mat);
 | 
						|
    _InputOutputArray(const ogl::Buffer& buf);
 | 
						|
    _InputOutputArray(const cuda::HostMem& cuda_mem);
 | 
						|
    template<typename _Tp> _InputOutputArray(const cudev::GpuMat_<_Tp>& m);
 | 
						|
    template<typename _Tp> _InputOutputArray(const std::vector<_Tp>& vec);
 | 
						|
    template<typename _Tp> _InputOutputArray(const std::vector<std::vector<_Tp> >& vec);
 | 
						|
    template<typename _Tp> _InputOutputArray(const std::vector<Mat_<_Tp> >& vec);
 | 
						|
    template<typename _Tp> _InputOutputArray(const Mat_<_Tp>& m);
 | 
						|
    template<typename _Tp> _InputOutputArray(const _Tp* vec, int n);
 | 
						|
    template<typename _Tp, int m, int n> _InputOutputArray(const Matx<_Tp, m, n>& matx);
 | 
						|
    _InputOutputArray(const UMat& m);
 | 
						|
    _InputOutputArray(const std::vector<UMat>& vec);
 | 
						|
 | 
						|
    template<typename _Tp, std::size_t _Nm> _InputOutputArray(std::array<_Tp, _Nm>& arr);
 | 
						|
    template<typename _Tp, std::size_t _Nm> _InputOutputArray(const std::array<_Tp, _Nm>& arr);
 | 
						|
    template<std::size_t _Nm> _InputOutputArray(std::array<Mat, _Nm>& arr);
 | 
						|
    template<std::size_t _Nm> _InputOutputArray(const std::array<Mat, _Nm>& arr);
 | 
						|
 | 
						|
    template<typename _Tp> static _InputOutputArray rawInOut(std::vector<_Tp>& vec);
 | 
						|
    template<typename _Tp, std::size_t _Nm> _InputOutputArray rawInOut(std::array<_Tp, _Nm>& arr);
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
/** Helper to wrap custom types. @see InputArray */
 | 
						|
template<typename _Tp> static inline _InputArray rawIn(_Tp& v);
 | 
						|
/** Helper to wrap custom types. @see InputArray */
 | 
						|
template<typename _Tp> static inline _OutputArray rawOut(_Tp& v);
 | 
						|
/** Helper to wrap custom types. @see InputArray */
 | 
						|
template<typename _Tp> static inline _InputOutputArray rawInOut(_Tp& v);
 | 
						|
 | 
						|
CV__DEBUG_NS_END
 | 
						|
 | 
						|
typedef const _InputArray& InputArray;
 | 
						|
typedef InputArray InputArrayOfArrays;
 | 
						|
typedef const _OutputArray& OutputArray;
 | 
						|
typedef OutputArray OutputArrayOfArrays;
 | 
						|
typedef const _InputOutputArray& InputOutputArray;
 | 
						|
typedef InputOutputArray InputOutputArrayOfArrays;
 | 
						|
 | 
						|
CV_EXPORTS InputOutputArray noArray();
 | 
						|
 | 
						|
/////////////////////////////////// MatAllocator //////////////////////////////////////
 | 
						|
 | 
						|
//! Usage flags for allocator
 | 
						|
enum UMatUsageFlags
 | 
						|
{
 | 
						|
    USAGE_DEFAULT = 0,
 | 
						|
 | 
						|
    // buffer allocation policy is platform and usage specific
 | 
						|
    USAGE_ALLOCATE_HOST_MEMORY = 1 << 0,
 | 
						|
    USAGE_ALLOCATE_DEVICE_MEMORY = 1 << 1,
 | 
						|
    USAGE_ALLOCATE_SHARED_MEMORY = 1 << 2, // It is not equal to: USAGE_ALLOCATE_HOST_MEMORY | USAGE_ALLOCATE_DEVICE_MEMORY
 | 
						|
 | 
						|
    __UMAT_USAGE_FLAGS_32BIT = 0x7fffffff // Binary compatibility hint
 | 
						|
};
 | 
						|
 | 
						|
struct CV_EXPORTS UMatData;
 | 
						|
 | 
						|
/** @brief  Custom array allocator
 | 
						|
*/
 | 
						|
class CV_EXPORTS MatAllocator
 | 
						|
{
 | 
						|
public:
 | 
						|
    MatAllocator() {}
 | 
						|
    virtual ~MatAllocator() {}
 | 
						|
 | 
						|
    // let's comment it off for now to detect and fix all the uses of allocator
 | 
						|
    //virtual void allocate(int dims, const int* sizes, int type, int*& refcount,
 | 
						|
    //                      uchar*& datastart, uchar*& data, size_t* step) = 0;
 | 
						|
    //virtual void deallocate(int* refcount, uchar* datastart, uchar* data) = 0;
 | 
						|
    virtual UMatData* allocate(int dims, const int* sizes, int type,
 | 
						|
                               void* data, size_t* step, AccessFlag flags, UMatUsageFlags usageFlags) const = 0;
 | 
						|
    virtual bool allocate(UMatData* data, AccessFlag accessflags, UMatUsageFlags usageFlags) const = 0;
 | 
						|
    virtual void deallocate(UMatData* data) const = 0;
 | 
						|
    virtual void map(UMatData* data, AccessFlag accessflags) const;
 | 
						|
    virtual void unmap(UMatData* data) const;
 | 
						|
    virtual void download(UMatData* data, void* dst, int dims, const size_t sz[],
 | 
						|
                          const size_t srcofs[], const size_t srcstep[],
 | 
						|
                          const size_t dststep[]) const;
 | 
						|
    virtual void upload(UMatData* data, const void* src, int dims, const size_t sz[],
 | 
						|
                        const size_t dstofs[], const size_t dststep[],
 | 
						|
                        const size_t srcstep[]) const;
 | 
						|
    virtual void copy(UMatData* srcdata, UMatData* dstdata, int dims, const size_t sz[],
 | 
						|
                      const size_t srcofs[], const size_t srcstep[],
 | 
						|
                      const size_t dstofs[], const size_t dststep[], bool sync) const;
 | 
						|
 | 
						|
    // default implementation returns DummyBufferPoolController
 | 
						|
    virtual BufferPoolController* getBufferPoolController(const char* id = NULL) const;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
//////////////////////////////// MatCommaInitializer //////////////////////////////////
 | 
						|
 | 
						|
/** @brief  Comma-separated Matrix Initializer
 | 
						|
 | 
						|
 The class instances are usually not created explicitly.
 | 
						|
 Instead, they are created on "matrix << firstValue" operator.
 | 
						|
 | 
						|
 The sample below initializes 2x2 rotation matrix:
 | 
						|
 | 
						|
 \code
 | 
						|
 double angle = 30, a = cos(angle*CV_PI/180), b = sin(angle*CV_PI/180);
 | 
						|
 Mat R = (Mat_<double>(2,2) << a, -b, b, a);
 | 
						|
 \endcode
 | 
						|
*/
 | 
						|
template<typename _Tp> class MatCommaInitializer_
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! the constructor, created by "matrix << firstValue" operator, where matrix is cv::Mat
 | 
						|
    MatCommaInitializer_(Mat_<_Tp>* _m);
 | 
						|
    //! the operator that takes the next value and put it to the matrix
 | 
						|
    template<typename T2> MatCommaInitializer_<_Tp>& operator , (T2 v);
 | 
						|
    //! another form of conversion operator
 | 
						|
    operator Mat_<_Tp>() const;
 | 
						|
protected:
 | 
						|
    MatIterator_<_Tp> it;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/////////////////////////////////////// Mat ///////////////////////////////////////////
 | 
						|
 | 
						|
// note that umatdata might be allocated together
 | 
						|
// with the matrix data, not as a separate object.
 | 
						|
// therefore, it does not have constructor or destructor;
 | 
						|
// it should be explicitly initialized using init().
 | 
						|
struct CV_EXPORTS UMatData
 | 
						|
{
 | 
						|
    enum MemoryFlag { COPY_ON_MAP=1, HOST_COPY_OBSOLETE=2,
 | 
						|
        DEVICE_COPY_OBSOLETE=4, TEMP_UMAT=8, TEMP_COPIED_UMAT=24,
 | 
						|
        USER_ALLOCATED=32, DEVICE_MEM_MAPPED=64,
 | 
						|
        ASYNC_CLEANUP=128
 | 
						|
    };
 | 
						|
    UMatData(const MatAllocator* allocator);
 | 
						|
    ~UMatData();
 | 
						|
 | 
						|
    // provide atomic access to the structure
 | 
						|
    void lock();
 | 
						|
    void unlock();
 | 
						|
 | 
						|
    bool hostCopyObsolete() const;
 | 
						|
    bool deviceCopyObsolete() const;
 | 
						|
    bool deviceMemMapped() const;
 | 
						|
    bool copyOnMap() const;
 | 
						|
    bool tempUMat() const;
 | 
						|
    bool tempCopiedUMat() const;
 | 
						|
    void markHostCopyObsolete(bool flag);
 | 
						|
    void markDeviceCopyObsolete(bool flag);
 | 
						|
    void markDeviceMemMapped(bool flag);
 | 
						|
 | 
						|
    const MatAllocator* prevAllocator;
 | 
						|
    const MatAllocator* currAllocator;
 | 
						|
    int urefcount;
 | 
						|
    int refcount;
 | 
						|
    uchar* data;
 | 
						|
    uchar* origdata;
 | 
						|
    size_t size;
 | 
						|
 | 
						|
    UMatData::MemoryFlag flags;
 | 
						|
    void* handle;
 | 
						|
    void* userdata;
 | 
						|
    int allocatorFlags_;
 | 
						|
    int mapcount;
 | 
						|
    UMatData* originalUMatData;
 | 
						|
    std::shared_ptr<void> allocatorContext;
 | 
						|
};
 | 
						|
CV_ENUM_FLAGS(UMatData::MemoryFlag)
 | 
						|
 | 
						|
 | 
						|
struct CV_EXPORTS MatSize
 | 
						|
{
 | 
						|
    explicit MatSize(int* _p) CV_NOEXCEPT;
 | 
						|
    int dims() const CV_NOEXCEPT;
 | 
						|
    Size operator()() const;
 | 
						|
    const int& operator[](int i) const;
 | 
						|
    int& operator[](int i);
 | 
						|
    operator const int*() const CV_NOEXCEPT;  // TODO OpenCV 4.0: drop this
 | 
						|
    bool operator == (const MatSize& sz) const CV_NOEXCEPT;
 | 
						|
    bool operator != (const MatSize& sz) const CV_NOEXCEPT;
 | 
						|
 | 
						|
    int* p;
 | 
						|
};
 | 
						|
 | 
						|
struct CV_EXPORTS MatStep
 | 
						|
{
 | 
						|
    MatStep() CV_NOEXCEPT;
 | 
						|
    explicit MatStep(size_t s) CV_NOEXCEPT;
 | 
						|
    const size_t& operator[](int i) const CV_NOEXCEPT;
 | 
						|
    size_t& operator[](int i) CV_NOEXCEPT;
 | 
						|
    operator size_t() const;
 | 
						|
    MatStep& operator = (size_t s);
 | 
						|
 | 
						|
    size_t* p;
 | 
						|
    size_t buf[2];
 | 
						|
protected:
 | 
						|
    MatStep& operator = (const MatStep&);
 | 
						|
};
 | 
						|
 | 
						|
/** @example samples/cpp/cout_mat.cpp
 | 
						|
An example demonstrating the serial out capabilities of cv::Mat
 | 
						|
*/
 | 
						|
 | 
						|
 /** @brief n-dimensional dense array class \anchor CVMat_Details
 | 
						|
 | 
						|
The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It
 | 
						|
can be used to store real or complex-valued vectors and matrices, grayscale or color images, voxel
 | 
						|
volumes, vector fields, point clouds, tensors, histograms (though, very high-dimensional histograms
 | 
						|
may be better stored in a SparseMat ). The data layout of the array `M` is defined by the array
 | 
						|
`M.step[]`, so that the address of element \f$(i_0,...,i_{M.dims-1})\f$, where \f$0\leq i_k<M.size[k]\f$, is
 | 
						|
computed as:
 | 
						|
\f[addr(M_{i_0,...,i_{M.dims-1}}) = M.data + M.step[0]*i_0 + M.step[1]*i_1 + ... + M.step[M.dims-1]*i_{M.dims-1}\f]
 | 
						|
In case of a 2-dimensional array, the above formula is reduced to:
 | 
						|
\f[addr(M_{i,j}) = M.data + M.step[0]*i + M.step[1]*j\f]
 | 
						|
Note that `M.step[i] >= M.step[i+1]` (in fact, `M.step[i] >= M.step[i+1]*M.size[i+1]` ). This means
 | 
						|
that 2-dimensional matrices are stored row-by-row, 3-dimensional matrices are stored plane-by-plane,
 | 
						|
and so on. M.step[M.dims-1] is minimal and always equal to the element size M.elemSize() .
 | 
						|
 | 
						|
So, the data layout in Mat is compatible with the majority of dense array types from the standard
 | 
						|
toolkits and SDKs, such as Numpy (ndarray), Win32 (independent device bitmaps), and others,
 | 
						|
that is, with any array that uses *steps* (or *strides*) to compute the position of a pixel.
 | 
						|
Due to this compatibility, it is possible to make a Mat header for user-allocated data and process
 | 
						|
it in-place using OpenCV functions.
 | 
						|
 | 
						|
There are many different ways to create a Mat object. The most popular options are listed below:
 | 
						|
 | 
						|
- Use the create(nrows, ncols, type) method or the similar Mat(nrows, ncols, type[, fillValue])
 | 
						|
constructor. A new array of the specified size and type is allocated. type has the same meaning as
 | 
						|
in the cvCreateMat method. For example, CV_8UC1 means a 8-bit single-channel array, CV_32FC2
 | 
						|
means a 2-channel (complex) floating-point array, and so on.
 | 
						|
@code
 | 
						|
    // make a 7x7 complex matrix filled with 1+3j.
 | 
						|
    Mat M(7,7,CV_32FC2,Scalar(1,3));
 | 
						|
    // and now turn M to a 100x60 15-channel 8-bit matrix.
 | 
						|
    // The old content will be deallocated
 | 
						|
    M.create(100,60,CV_8UC(15));
 | 
						|
@endcode
 | 
						|
As noted in the introduction to this chapter, create() allocates only a new array when the shape
 | 
						|
or type of the current array are different from the specified ones.
 | 
						|
 | 
						|
- Create a multi-dimensional array:
 | 
						|
@code
 | 
						|
    // create a 100x100x100 8-bit array
 | 
						|
    int sz[] = {100, 100, 100};
 | 
						|
    Mat bigCube(3, sz, CV_8U, Scalar::all(0));
 | 
						|
@endcode
 | 
						|
It passes the number of dimensions =1 to the Mat constructor but the created array will be
 | 
						|
2-dimensional with the number of columns set to 1. So, Mat::dims is always \>= 2 (can also be 0
 | 
						|
when the array is empty).
 | 
						|
 | 
						|
- Use a copy constructor or assignment operator where there can be an array or expression on the
 | 
						|
right side (see below). As noted in the introduction, the array assignment is an O(1) operation
 | 
						|
because it only copies the header and increases the reference counter. The Mat::clone() method can
 | 
						|
be used to get a full (deep) copy of the array when you need it.
 | 
						|
 | 
						|
- Construct a header for a part of another array. It can be a single row, single column, several
 | 
						|
rows, several columns, rectangular region in the array (called a *minor* in algebra) or a
 | 
						|
diagonal. Such operations are also O(1) because the new header references the same data. You can
 | 
						|
actually modify a part of the array using this feature, for example:
 | 
						|
@code
 | 
						|
    // add the 5-th row, multiplied by 3 to the 3rd row
 | 
						|
    M.row(3) = M.row(3) + M.row(5)*3;
 | 
						|
    // now copy the 7-th column to the 1-st column
 | 
						|
    // M.col(1) = M.col(7); // this will not work
 | 
						|
    Mat M1 = M.col(1);
 | 
						|
    M.col(7).copyTo(M1);
 | 
						|
    // create a new 320x240 image
 | 
						|
    Mat img(Size(320,240),CV_8UC3);
 | 
						|
    // select a ROI
 | 
						|
    Mat roi(img, Rect(10,10,100,100));
 | 
						|
    // fill the ROI with (0,255,0) (which is green in RGB space);
 | 
						|
    // the original 320x240 image will be modified
 | 
						|
    roi = Scalar(0,255,0);
 | 
						|
@endcode
 | 
						|
Due to the additional datastart and dataend members, it is possible to compute a relative
 | 
						|
sub-array position in the main *container* array using locateROI():
 | 
						|
@code
 | 
						|
    Mat A = Mat::eye(10, 10, CV_32S);
 | 
						|
    // extracts A columns, 1 (inclusive) to 3 (exclusive).
 | 
						|
    Mat B = A(Range::all(), Range(1, 3));
 | 
						|
    // extracts B rows, 5 (inclusive) to 9 (exclusive).
 | 
						|
    // that is, C \~ A(Range(5, 9), Range(1, 3))
 | 
						|
    Mat C = B(Range(5, 9), Range::all());
 | 
						|
    Size size; Point ofs;
 | 
						|
    C.locateROI(size, ofs);
 | 
						|
    // size will be (width=10,height=10) and the ofs will be (x=1, y=5)
 | 
						|
@endcode
 | 
						|
As in case of whole matrices, if you need a deep copy, use the `clone()` method of the extracted
 | 
						|
sub-matrices.
 | 
						|
 | 
						|
- Make a header for user-allocated data. It can be useful to do the following:
 | 
						|
    -# Process "foreign" data using OpenCV (for example, when you implement a DirectShow\* filter or
 | 
						|
    a processing module for gstreamer, and so on). For example:
 | 
						|
    @code
 | 
						|
        Mat process_video_frame(const unsigned char* pixels,
 | 
						|
                                int width, int height, int step)
 | 
						|
        {
 | 
						|
            // wrap input buffer
 | 
						|
            Mat img(height, width, CV_8UC3, (unsigned char*)pixels, step);
 | 
						|
 | 
						|
            Mat result;
 | 
						|
            GaussianBlur(img, result, Size(7, 7), 1.5, 1.5);
 | 
						|
 | 
						|
            return result;
 | 
						|
        }
 | 
						|
    @endcode
 | 
						|
    -# Quickly initialize small matrices and/or get a super-fast element access.
 | 
						|
    @code
 | 
						|
        double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}};
 | 
						|
        Mat M = Mat(3, 3, CV_64F, m).inv();
 | 
						|
    @endcode
 | 
						|
    .
 | 
						|
 | 
						|
- Use MATLAB-style array initializers, zeros(), ones(), eye(), for example:
 | 
						|
@code
 | 
						|
    // create a double-precision identity matrix and add it to M.
 | 
						|
    M += Mat::eye(M.rows, M.cols, CV_64F);
 | 
						|
@endcode
 | 
						|
 | 
						|
- Use a comma-separated initializer:
 | 
						|
@code
 | 
						|
    // create a 3x3 double-precision identity matrix
 | 
						|
    Mat M = (Mat_<double>(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1);
 | 
						|
@endcode
 | 
						|
With this approach, you first call a constructor of the Mat class with the proper parameters, and
 | 
						|
then you just put `<< operator` followed by comma-separated values that can be constants,
 | 
						|
variables, expressions, and so on. Also, note the extra parentheses required to avoid compilation
 | 
						|
errors.
 | 
						|
 | 
						|
Once the array is created, it is automatically managed via a reference-counting mechanism. If the
 | 
						|
array header is built on top of user-allocated data, you should handle the data by yourself. The
 | 
						|
array data is deallocated when no one points to it. If you want to release the data pointed by a
 | 
						|
array header before the array destructor is called, use Mat::release().
 | 
						|
 | 
						|
The next important thing to learn about the array class is element access. This manual already
 | 
						|
described how to compute an address of each array element. Normally, you are not required to use the
 | 
						|
formula directly in the code. If you know the array element type (which can be retrieved using the
 | 
						|
method Mat::type() ), you can access the element \f$M_{ij}\f$ of a 2-dimensional array as:
 | 
						|
@code
 | 
						|
    M.at<double>(i,j) += 1.f;
 | 
						|
@endcode
 | 
						|
assuming that `M` is a double-precision floating-point array. There are several variants of the method
 | 
						|
at for a different number of dimensions.
 | 
						|
 | 
						|
If you need to process a whole row of a 2D array, the most efficient way is to get the pointer to
 | 
						|
the row first, and then just use the plain C operator [] :
 | 
						|
@code
 | 
						|
    // compute sum of positive matrix elements
 | 
						|
    // (assuming that M is a double-precision matrix)
 | 
						|
    double sum=0;
 | 
						|
    for(int i = 0; i < M.rows; i++)
 | 
						|
    {
 | 
						|
        const double* Mi = M.ptr<double>(i);
 | 
						|
        for(int j = 0; j < M.cols; j++)
 | 
						|
            sum += std::max(Mi[j], 0.);
 | 
						|
    }
 | 
						|
@endcode
 | 
						|
Some operations, like the one above, do not actually depend on the array shape. They just process
 | 
						|
elements of an array one by one (or elements from multiple arrays that have the same coordinates,
 | 
						|
for example, array addition). Such operations are called *element-wise*. It makes sense to check
 | 
						|
whether all the input/output arrays are continuous, namely, have no gaps at the end of each row. If
 | 
						|
yes, process them as a long single row:
 | 
						|
@code
 | 
						|
    // compute the sum of positive matrix elements, optimized variant
 | 
						|
    double sum=0;
 | 
						|
    int cols = M.cols, rows = M.rows;
 | 
						|
    if(M.isContinuous())
 | 
						|
    {
 | 
						|
        cols *= rows;
 | 
						|
        rows = 1;
 | 
						|
    }
 | 
						|
    for(int i = 0; i < rows; i++)
 | 
						|
    {
 | 
						|
        const double* Mi = M.ptr<double>(i);
 | 
						|
        for(int j = 0; j < cols; j++)
 | 
						|
            sum += std::max(Mi[j], 0.);
 | 
						|
    }
 | 
						|
@endcode
 | 
						|
In case of the continuous matrix, the outer loop body is executed just once. So, the overhead is
 | 
						|
smaller, which is especially noticeable in case of small matrices.
 | 
						|
 | 
						|
Finally, there are STL-style iterators that are smart enough to skip gaps between successive rows:
 | 
						|
@code
 | 
						|
    // compute sum of positive matrix elements, iterator-based variant
 | 
						|
    double sum=0;
 | 
						|
    MatConstIterator_<double> it = M.begin<double>(), it_end = M.end<double>();
 | 
						|
    for(; it != it_end; ++it)
 | 
						|
        sum += std::max(*it, 0.);
 | 
						|
@endcode
 | 
						|
The matrix iterators are random-access iterators, so they can be passed to any STL algorithm,
 | 
						|
including std::sort().
 | 
						|
 | 
						|
@note Matrix Expressions and arithmetic see MatExpr
 | 
						|
*/
 | 
						|
class CV_EXPORTS Mat
 | 
						|
{
 | 
						|
public:
 | 
						|
    /**
 | 
						|
    These are various constructors that form a matrix. As noted in the AutomaticAllocation, often
 | 
						|
    the default constructor is enough, and the proper matrix will be allocated by an OpenCV function.
 | 
						|
    The constructed matrix can further be assigned to another matrix or matrix expression or can be
 | 
						|
    allocated with Mat::create . In the former case, the old content is de-referenced.
 | 
						|
     */
 | 
						|
    Mat() CV_NOEXCEPT;
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param rows Number of rows in a 2D array.
 | 
						|
    @param cols Number of columns in a 2D array.
 | 
						|
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
 | 
						|
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
 | 
						|
    */
 | 
						|
    Mat(int rows, int cols, int type);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the
 | 
						|
    number of columns go in the reverse order.
 | 
						|
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
 | 
						|
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
 | 
						|
      */
 | 
						|
    Mat(Size size, int type);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param rows Number of rows in a 2D array.
 | 
						|
    @param cols Number of columns in a 2D array.
 | 
						|
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
 | 
						|
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
 | 
						|
    @param s An optional value to initialize each matrix element with. To set all the matrix elements to
 | 
						|
    the particular value after the construction, use the assignment operator
 | 
						|
    Mat::operator=(const Scalar& value) .
 | 
						|
    */
 | 
						|
    Mat(int rows, int cols, int type, const Scalar& s);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the
 | 
						|
    number of columns go in the reverse order.
 | 
						|
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
 | 
						|
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
 | 
						|
    @param s An optional value to initialize each matrix element with. To set all the matrix elements to
 | 
						|
    the particular value after the construction, use the assignment operator
 | 
						|
    Mat::operator=(const Scalar& value) .
 | 
						|
      */
 | 
						|
    Mat(Size size, int type, const Scalar& s);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param ndims Array dimensionality.
 | 
						|
    @param sizes Array of integers specifying an n-dimensional array shape.
 | 
						|
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
 | 
						|
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
 | 
						|
    */
 | 
						|
    Mat(int ndims, const int* sizes, int type);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param sizes Array of integers specifying an n-dimensional array shape.
 | 
						|
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
 | 
						|
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
 | 
						|
    */
 | 
						|
    Mat(const std::vector<int>& sizes, int type);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param ndims Array dimensionality.
 | 
						|
    @param sizes Array of integers specifying an n-dimensional array shape.
 | 
						|
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
 | 
						|
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
 | 
						|
    @param s An optional value to initialize each matrix element with. To set all the matrix elements to
 | 
						|
    the particular value after the construction, use the assignment operator
 | 
						|
    Mat::operator=(const Scalar& value) .
 | 
						|
    */
 | 
						|
    Mat(int ndims, const int* sizes, int type, const Scalar& s);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param sizes Array of integers specifying an n-dimensional array shape.
 | 
						|
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
 | 
						|
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
 | 
						|
    @param s An optional value to initialize each matrix element with. To set all the matrix elements to
 | 
						|
    the particular value after the construction, use the assignment operator
 | 
						|
    Mat::operator=(const Scalar& value) .
 | 
						|
    */
 | 
						|
    Mat(const std::vector<int>& sizes, int type, const Scalar& s);
 | 
						|
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
 | 
						|
    by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
 | 
						|
    associated with it. The reference counter, if any, is incremented. So, when you modify the matrix
 | 
						|
    formed using such a constructor, you also modify the corresponding elements of m . If you want to
 | 
						|
    have an independent copy of the sub-array, use Mat::clone() .
 | 
						|
    */
 | 
						|
    Mat(const Mat& m);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param rows Number of rows in a 2D array.
 | 
						|
    @param cols Number of columns in a 2D array.
 | 
						|
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
 | 
						|
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
 | 
						|
    @param data Pointer to the user data. Matrix constructors that take data and step parameters do not
 | 
						|
    allocate matrix data. Instead, they just initialize the matrix header that points to the specified
 | 
						|
    data, which means that no data is copied. This operation is very efficient and can be used to
 | 
						|
    process external data using OpenCV functions. The external data is not automatically deallocated, so
 | 
						|
    you should take care of it.
 | 
						|
    @param step Number of bytes each matrix row occupies. The value should include the padding bytes at
 | 
						|
    the end of each row, if any. If the parameter is missing (set to AUTO_STEP ), no padding is assumed
 | 
						|
    and the actual step is calculated as cols*elemSize(). See Mat::elemSize.
 | 
						|
    */
 | 
						|
    Mat(int rows, int cols, int type, void* data, size_t step=AUTO_STEP);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the
 | 
						|
    number of columns go in the reverse order.
 | 
						|
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
 | 
						|
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
 | 
						|
    @param data Pointer to the user data. Matrix constructors that take data and step parameters do not
 | 
						|
    allocate matrix data. Instead, they just initialize the matrix header that points to the specified
 | 
						|
    data, which means that no data is copied. This operation is very efficient and can be used to
 | 
						|
    process external data using OpenCV functions. The external data is not automatically deallocated, so
 | 
						|
    you should take care of it.
 | 
						|
    @param step Number of bytes each matrix row occupies. The value should include the padding bytes at
 | 
						|
    the end of each row, if any. If the parameter is missing (set to AUTO_STEP ), no padding is assumed
 | 
						|
    and the actual step is calculated as cols*elemSize(). See Mat::elemSize.
 | 
						|
    */
 | 
						|
    Mat(Size size, int type, void* data, size_t step=AUTO_STEP);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param ndims Array dimensionality.
 | 
						|
    @param sizes Array of integers specifying an n-dimensional array shape.
 | 
						|
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
 | 
						|
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
 | 
						|
    @param data Pointer to the user data. Matrix constructors that take data and step parameters do not
 | 
						|
    allocate matrix data. Instead, they just initialize the matrix header that points to the specified
 | 
						|
    data, which means that no data is copied. This operation is very efficient and can be used to
 | 
						|
    process external data using OpenCV functions. The external data is not automatically deallocated, so
 | 
						|
    you should take care of it.
 | 
						|
    @param steps Array of ndims-1 steps in case of a multi-dimensional array (the last step is always
 | 
						|
    set to the element size). If not specified, the matrix is assumed to be continuous.
 | 
						|
    */
 | 
						|
    Mat(int ndims, const int* sizes, int type, void* data, const size_t* steps=0);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param sizes Array of integers specifying an n-dimensional array shape.
 | 
						|
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
 | 
						|
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
 | 
						|
    @param data Pointer to the user data. Matrix constructors that take data and step parameters do not
 | 
						|
    allocate matrix data. Instead, they just initialize the matrix header that points to the specified
 | 
						|
    data, which means that no data is copied. This operation is very efficient and can be used to
 | 
						|
    process external data using OpenCV functions. The external data is not automatically deallocated, so
 | 
						|
    you should take care of it.
 | 
						|
    @param steps Array of ndims-1 steps in case of a multi-dimensional array (the last step is always
 | 
						|
    set to the element size). If not specified, the matrix is assumed to be continuous.
 | 
						|
    */
 | 
						|
    Mat(const std::vector<int>& sizes, int type, void* data, const size_t* steps=0);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
 | 
						|
    by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
 | 
						|
    associated with it. The reference counter, if any, is incremented. So, when you modify the matrix
 | 
						|
    formed using such a constructor, you also modify the corresponding elements of m . If you want to
 | 
						|
    have an independent copy of the sub-array, use Mat::clone() .
 | 
						|
    @param rowRange Range of the m rows to take. As usual, the range start is inclusive and the range
 | 
						|
    end is exclusive. Use Range::all() to take all the rows.
 | 
						|
    @param colRange Range of the m columns to take. Use Range::all() to take all the columns.
 | 
						|
    */
 | 
						|
    Mat(const Mat& m, const Range& rowRange, const Range& colRange=Range::all());
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
 | 
						|
    by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
 | 
						|
    associated with it. The reference counter, if any, is incremented. So, when you modify the matrix
 | 
						|
    formed using such a constructor, you also modify the corresponding elements of m . If you want to
 | 
						|
    have an independent copy of the sub-array, use Mat::clone() .
 | 
						|
    @param roi Region of interest.
 | 
						|
    */
 | 
						|
    Mat(const Mat& m, const Rect& roi);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
 | 
						|
    by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
 | 
						|
    associated with it. The reference counter, if any, is incremented. So, when you modify the matrix
 | 
						|
    formed using such a constructor, you also modify the corresponding elements of m . If you want to
 | 
						|
    have an independent copy of the sub-array, use Mat::clone() .
 | 
						|
    @param ranges Array of selected ranges of m along each dimensionality.
 | 
						|
    */
 | 
						|
    Mat(const Mat& m, const Range* ranges);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
 | 
						|
    by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
 | 
						|
    associated with it. The reference counter, if any, is incremented. So, when you modify the matrix
 | 
						|
    formed using such a constructor, you also modify the corresponding elements of m . If you want to
 | 
						|
    have an independent copy of the sub-array, use Mat::clone() .
 | 
						|
    @param ranges Array of selected ranges of m along each dimensionality.
 | 
						|
    */
 | 
						|
    Mat(const Mat& m, const std::vector<Range>& ranges);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param vec STL vector whose elements form the matrix. The matrix has a single column and the number
 | 
						|
    of rows equal to the number of vector elements. Type of the matrix matches the type of vector
 | 
						|
    elements. The constructor can handle arbitrary types, for which there is a properly declared
 | 
						|
    DataType . This means that the vector elements must be primitive numbers or uni-type numerical
 | 
						|
    tuples of numbers. Mixed-type structures are not supported. The corresponding constructor is
 | 
						|
    explicit. Since STL vectors are not automatically converted to Mat instances, you should write
 | 
						|
    Mat(vec) explicitly. Unless you copy the data into the matrix ( copyData=true ), no new elements
 | 
						|
    will be added to the vector because it can potentially yield vector data reallocation, and, thus,
 | 
						|
    the matrix data pointer will be invalid.
 | 
						|
    @param copyData Flag to specify whether the underlying data of the STL vector should be copied
 | 
						|
    to (true) or shared with (false) the newly constructed matrix. When the data is copied, the
 | 
						|
    allocated buffer is managed using Mat reference counting mechanism. While the data is shared,
 | 
						|
    the reference counter is NULL, and you should not deallocate the data until the matrix is not
 | 
						|
    destructed.
 | 
						|
    */
 | 
						|
    template<typename _Tp> explicit Mat(const std::vector<_Tp>& vec, bool copyData=false);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    */
 | 
						|
    template<typename _Tp, typename = typename std::enable_if<std::is_arithmetic<_Tp>::value>::type>
 | 
						|
    explicit Mat(const std::initializer_list<_Tp> list);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    */
 | 
						|
    template<typename _Tp> explicit Mat(const std::initializer_list<int> sizes, const std::initializer_list<_Tp> list);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    */
 | 
						|
    template<typename _Tp, size_t _Nm> explicit Mat(const std::array<_Tp, _Nm>& arr, bool copyData=false);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    */
 | 
						|
    template<typename _Tp, int n> explicit Mat(const Vec<_Tp, n>& vec, bool copyData=true);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    */
 | 
						|
    template<typename _Tp, int m, int n> explicit Mat(const Matx<_Tp, m, n>& mtx, bool copyData=true);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    */
 | 
						|
    template<typename _Tp> explicit Mat(const Point_<_Tp>& pt, bool copyData=true);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    */
 | 
						|
    template<typename _Tp> explicit Mat(const Point3_<_Tp>& pt, bool copyData=true);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    */
 | 
						|
    template<typename _Tp> explicit Mat(const MatCommaInitializer_<_Tp>& commaInitializer);
 | 
						|
 | 
						|
    //! download data from GpuMat
 | 
						|
    explicit Mat(const cuda::GpuMat& m);
 | 
						|
 | 
						|
    //! destructor - calls release()
 | 
						|
    ~Mat();
 | 
						|
 | 
						|
    /** @brief assignment operators
 | 
						|
 | 
						|
    These are available assignment operators. Since they all are very different, make sure to read the
 | 
						|
    operator parameters description.
 | 
						|
    @param m Assigned, right-hand-side matrix. Matrix assignment is an O(1) operation. This means that
 | 
						|
    no data is copied but the data is shared and the reference counter, if any, is incremented. Before
 | 
						|
    assigning new data, the old data is de-referenced via Mat::release .
 | 
						|
     */
 | 
						|
    Mat& operator = (const Mat& m);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param expr Assigned matrix expression object. As opposite to the first form of the assignment
 | 
						|
    operation, the second form can reuse already allocated matrix if it has the right size and type to
 | 
						|
    fit the matrix expression result. It is automatically handled by the real function that the matrix
 | 
						|
    expressions is expanded to. For example, C=A+B is expanded to add(A, B, C), and add takes care of
 | 
						|
    automatic C reallocation.
 | 
						|
    */
 | 
						|
    Mat& operator = (const MatExpr& expr);
 | 
						|
 | 
						|
    //! retrieve UMat from Mat
 | 
						|
    UMat getUMat(AccessFlag accessFlags, UMatUsageFlags usageFlags = USAGE_DEFAULT) const;
 | 
						|
 | 
						|
    /** @brief Creates a matrix header for the specified matrix row.
 | 
						|
 | 
						|
    The method makes a new header for the specified matrix row and returns it. This is an O(1)
 | 
						|
    operation, regardless of the matrix size. The underlying data of the new matrix is shared with the
 | 
						|
    original matrix. Here is the example of one of the classical basic matrix processing operations,
 | 
						|
    axpy, used by LU and many other algorithms:
 | 
						|
    @code
 | 
						|
        inline void matrix_axpy(Mat& A, int i, int j, double alpha)
 | 
						|
        {
 | 
						|
            A.row(i) += A.row(j)*alpha;
 | 
						|
        }
 | 
						|
    @endcode
 | 
						|
    @note In the current implementation, the following code does not work as expected:
 | 
						|
    @code
 | 
						|
        Mat A;
 | 
						|
        ...
 | 
						|
        A.row(i) = A.row(j); // will not work
 | 
						|
    @endcode
 | 
						|
    This happens because A.row(i) forms a temporary header that is further assigned to another header.
 | 
						|
    Remember that each of these operations is O(1), that is, no data is copied. Thus, the above
 | 
						|
    assignment is not true if you may have expected the j-th row to be copied to the i-th row. To
 | 
						|
    achieve that, you should either turn this simple assignment into an expression or use the
 | 
						|
    Mat::copyTo method:
 | 
						|
    @code
 | 
						|
        Mat A;
 | 
						|
        ...
 | 
						|
        // works, but looks a bit obscure.
 | 
						|
        A.row(i) = A.row(j) + 0;
 | 
						|
        // this is a bit longer, but the recommended method.
 | 
						|
        A.row(j).copyTo(A.row(i));
 | 
						|
    @endcode
 | 
						|
    @param y A 0-based row index.
 | 
						|
     */
 | 
						|
    Mat row(int y) const;
 | 
						|
 | 
						|
    /** @brief Creates a matrix header for the specified matrix column.
 | 
						|
 | 
						|
    The method makes a new header for the specified matrix column and returns it. This is an O(1)
 | 
						|
    operation, regardless of the matrix size. The underlying data of the new matrix is shared with the
 | 
						|
    original matrix. See also the Mat::row description.
 | 
						|
    @param x A 0-based column index.
 | 
						|
     */
 | 
						|
    Mat col(int x) const;
 | 
						|
 | 
						|
    /** @brief Creates a matrix header for the specified row span.
 | 
						|
 | 
						|
    The method makes a new header for the specified row span of the matrix. Similarly to Mat::row and
 | 
						|
    Mat::col , this is an O(1) operation.
 | 
						|
    @param startrow An inclusive 0-based start index of the row span.
 | 
						|
    @param endrow An exclusive 0-based ending index of the row span.
 | 
						|
     */
 | 
						|
    Mat rowRange(int startrow, int endrow) const;
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param r Range structure containing both the start and the end indices.
 | 
						|
    */
 | 
						|
    Mat rowRange(const Range& r) const;
 | 
						|
 | 
						|
    /** @brief Creates a matrix header for the specified column span.
 | 
						|
 | 
						|
    The method makes a new header for the specified column span of the matrix. Similarly to Mat::row and
 | 
						|
    Mat::col , this is an O(1) operation.
 | 
						|
    @param startcol An inclusive 0-based start index of the column span.
 | 
						|
    @param endcol An exclusive 0-based ending index of the column span.
 | 
						|
     */
 | 
						|
    Mat colRange(int startcol, int endcol) const;
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param r Range structure containing both the start and the end indices.
 | 
						|
    */
 | 
						|
    Mat colRange(const Range& r) const;
 | 
						|
 | 
						|
    /** @brief Extracts a diagonal from a matrix
 | 
						|
 | 
						|
    The method makes a new header for the specified matrix diagonal. The new matrix is represented as a
 | 
						|
    single-column matrix. Similarly to Mat::row and Mat::col, this is an O(1) operation.
 | 
						|
    @param d index of the diagonal, with the following values:
 | 
						|
    - `d=0` is the main diagonal.
 | 
						|
    - `d<0` is a diagonal from the lower half. For example, d=-1 means the diagonal is set
 | 
						|
      immediately below the main one.
 | 
						|
    - `d>0` is a diagonal from the upper half. For example, d=1 means the diagonal is set
 | 
						|
      immediately above the main one.
 | 
						|
    For example:
 | 
						|
    @code
 | 
						|
        Mat m = (Mat_<int>(3,3) <<
 | 
						|
                    1,2,3,
 | 
						|
                    4,5,6,
 | 
						|
                    7,8,9);
 | 
						|
        Mat d0 = m.diag(0);
 | 
						|
        Mat d1 = m.diag(1);
 | 
						|
        Mat d_1 = m.diag(-1);
 | 
						|
    @endcode
 | 
						|
    The resulting matrices are
 | 
						|
    @code
 | 
						|
     d0 =
 | 
						|
       [1;
 | 
						|
        5;
 | 
						|
        9]
 | 
						|
     d1 =
 | 
						|
       [2;
 | 
						|
        6]
 | 
						|
     d_1 =
 | 
						|
       [4;
 | 
						|
        8]
 | 
						|
    @endcode
 | 
						|
     */
 | 
						|
    Mat diag(int d=0) const;
 | 
						|
 | 
						|
    /** @brief creates a diagonal matrix
 | 
						|
 | 
						|
    The method creates a square diagonal matrix from specified main diagonal.
 | 
						|
    @param d One-dimensional matrix that represents the main diagonal.
 | 
						|
     */
 | 
						|
    CV_NODISCARD_STD static Mat diag(const Mat& d);
 | 
						|
 | 
						|
    /** @brief Creates a full copy of the array and the underlying data.
 | 
						|
 | 
						|
    The method creates a full copy of the array. The original step[] is not taken into account. So, the
 | 
						|
    array copy is a continuous array occupying total()*elemSize() bytes.
 | 
						|
     */
 | 
						|
    CV_NODISCARD_STD Mat clone() const;
 | 
						|
 | 
						|
    /** @brief Copies the matrix to another one.
 | 
						|
 | 
						|
    The method copies the matrix data to another matrix. Before copying the data, the method invokes :
 | 
						|
    @code
 | 
						|
        m.create(this->size(), this->type());
 | 
						|
    @endcode
 | 
						|
    so that the destination matrix is reallocated if needed. While m.copyTo(m); works flawlessly, the
 | 
						|
    function does not handle the case of a partial overlap between the source and the destination
 | 
						|
    matrices.
 | 
						|
 | 
						|
    When the operation mask is specified, if the Mat::create call shown above reallocates the matrix,
 | 
						|
    the newly allocated matrix is initialized with all zeros before copying the data.
 | 
						|
    @param m Destination matrix. If it does not have a proper size or type before the operation, it is
 | 
						|
    reallocated.
 | 
						|
     */
 | 
						|
    void copyTo( OutputArray m ) const;
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param m Destination matrix. If it does not have a proper size or type before the operation, it is
 | 
						|
    reallocated.
 | 
						|
    @param mask Operation mask of the same size as \*this. Its non-zero elements indicate which matrix
 | 
						|
    elements need to be copied. The mask has to be of type CV_8U and can have 1 or multiple channels.
 | 
						|
    */
 | 
						|
    void copyTo( OutputArray m, InputArray mask ) const;
 | 
						|
 | 
						|
    /** @brief Converts an array to another data type with optional scaling.
 | 
						|
 | 
						|
    The method converts source pixel values to the target data type. saturate_cast\<\> is applied at
 | 
						|
    the end to avoid possible overflows:
 | 
						|
 | 
						|
    \f[m(x,y) = saturate \_ cast<rType>( \alpha (*this)(x,y) +  \beta )\f]
 | 
						|
    @param m output matrix; if it does not have a proper size or type before the operation, it is
 | 
						|
    reallocated.
 | 
						|
    @param rtype desired output matrix type or, rather, the depth since the number of channels are the
 | 
						|
    same as the input has; if rtype is negative, the output matrix will have the same type as the input.
 | 
						|
    @param alpha optional scale factor.
 | 
						|
    @param beta optional delta added to the scaled values.
 | 
						|
     */
 | 
						|
    void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const;
 | 
						|
 | 
						|
    /** @brief Provides a functional form of convertTo.
 | 
						|
 | 
						|
    This is an internally used method called by the @ref MatrixExpressions engine.
 | 
						|
    @param m Destination array.
 | 
						|
    @param type Desired destination array depth (or -1 if it should be the same as the source type).
 | 
						|
     */
 | 
						|
    void assignTo( Mat& m, int type=-1 ) const;
 | 
						|
 | 
						|
    /** @brief Sets all or some of the array elements to the specified value.
 | 
						|
    @param s Assigned scalar converted to the actual array type.
 | 
						|
    */
 | 
						|
    Mat& operator = (const Scalar& s);
 | 
						|
 | 
						|
    /** @brief Sets all or some of the array elements to the specified value.
 | 
						|
 | 
						|
    This is an advanced variant of the Mat::operator=(const Scalar& s) operator.
 | 
						|
    @param value Assigned scalar converted to the actual array type.
 | 
						|
    @param mask Operation mask of the same size as \*this. Its non-zero elements indicate which matrix
 | 
						|
    elements need to be copied. The mask has to be of type CV_8U and can have 1 or multiple channels
 | 
						|
     */
 | 
						|
    Mat& setTo(InputArray value, InputArray mask=noArray());
 | 
						|
 | 
						|
    /** @brief Changes the shape and/or the number of channels of a 2D matrix without copying the data.
 | 
						|
 | 
						|
    The method makes a new matrix header for \*this elements. The new matrix may have a different size
 | 
						|
    and/or different number of channels. Any combination is possible if:
 | 
						|
    -   No extra elements are included into the new matrix and no elements are excluded. Consequently,
 | 
						|
        the product rows\*cols\*channels() must stay the same after the transformation.
 | 
						|
    -   No data is copied. That is, this is an O(1) operation. Consequently, if you change the number of
 | 
						|
        rows, or the operation changes the indices of elements row in some other way, the matrix must be
 | 
						|
        continuous. See Mat::isContinuous .
 | 
						|
 | 
						|
    For example, if there is a set of 3D points stored as an STL vector, and you want to represent the
 | 
						|
    points as a 3xN matrix, do the following:
 | 
						|
    @code
 | 
						|
        std::vector<Point3f> vec;
 | 
						|
        ...
 | 
						|
        Mat pointMat = Mat(vec). // convert vector to Mat, O(1) operation
 | 
						|
                          reshape(1). // make Nx3 1-channel matrix out of Nx1 3-channel.
 | 
						|
                                      // Also, an O(1) operation
 | 
						|
                             t(); // finally, transpose the Nx3 matrix.
 | 
						|
                                  // This involves copying all the elements
 | 
						|
    @endcode
 | 
						|
    @param cn New number of channels. If the parameter is 0, the number of channels remains the same.
 | 
						|
    @param rows New number of rows. If the parameter is 0, the number of rows remains the same.
 | 
						|
     */
 | 
						|
    Mat reshape(int cn, int rows=0) const;
 | 
						|
 | 
						|
    /** @overload */
 | 
						|
    Mat reshape(int cn, int newndims, const int* newsz) const;
 | 
						|
 | 
						|
    /** @overload */
 | 
						|
    Mat reshape(int cn, const std::vector<int>& newshape) const;
 | 
						|
 | 
						|
    /** @brief Transposes a matrix.
 | 
						|
 | 
						|
    The method performs matrix transposition by means of matrix expressions. It does not perform the
 | 
						|
    actual transposition but returns a temporary matrix transposition object that can be further used as
 | 
						|
    a part of more complex matrix expressions or can be assigned to a matrix:
 | 
						|
    @code
 | 
						|
        Mat A1 = A + Mat::eye(A.size(), A.type())*lambda;
 | 
						|
        Mat C = A1.t()*A1; // compute (A + lambda*I)^t * (A + lamda*I)
 | 
						|
    @endcode
 | 
						|
     */
 | 
						|
    MatExpr t() const;
 | 
						|
 | 
						|
    /** @brief Inverses a matrix.
 | 
						|
 | 
						|
    The method performs a matrix inversion by means of matrix expressions. This means that a temporary
 | 
						|
    matrix inversion object is returned by the method and can be used further as a part of more complex
 | 
						|
    matrix expressions or can be assigned to a matrix.
 | 
						|
    @param method Matrix inversion method. One of cv::DecompTypes
 | 
						|
     */
 | 
						|
    MatExpr inv(int method=DECOMP_LU) const;
 | 
						|
 | 
						|
    /** @brief Performs an element-wise multiplication or division of the two matrices.
 | 
						|
 | 
						|
    The method returns a temporary object encoding per-element array multiplication, with optional
 | 
						|
    scale. Note that this is not a matrix multiplication that corresponds to a simpler "\*" operator.
 | 
						|
 | 
						|
    Example:
 | 
						|
    @code
 | 
						|
        Mat C = A.mul(5/B); // equivalent to divide(A, B, C, 5)
 | 
						|
    @endcode
 | 
						|
    @param m Another array of the same type and the same size as \*this, or a matrix expression.
 | 
						|
    @param scale Optional scale factor.
 | 
						|
     */
 | 
						|
    MatExpr mul(InputArray m, double scale=1) const;
 | 
						|
 | 
						|
    /** @brief Computes a cross-product of two 3-element vectors.
 | 
						|
 | 
						|
    The method computes a cross-product of two 3-element vectors. The vectors must be 3-element
 | 
						|
    floating-point vectors of the same shape and size. The result is another 3-element vector of the
 | 
						|
    same shape and type as operands.
 | 
						|
    @param m Another cross-product operand.
 | 
						|
     */
 | 
						|
    Mat cross(InputArray m) const;
 | 
						|
 | 
						|
    /** @brief Computes a dot-product of two vectors.
 | 
						|
 | 
						|
    The method computes a dot-product of two matrices. If the matrices are not single-column or
 | 
						|
    single-row vectors, the top-to-bottom left-to-right scan ordering is used to treat them as 1D
 | 
						|
    vectors. The vectors must have the same size and type. If the matrices have more than one channel,
 | 
						|
    the dot products from all the channels are summed together.
 | 
						|
    @param m another dot-product operand.
 | 
						|
     */
 | 
						|
    double dot(InputArray m) const;
 | 
						|
 | 
						|
    /** @brief Returns a zero array of the specified size and type.
 | 
						|
 | 
						|
    The method returns a Matlab-style zero array initializer. It can be used to quickly form a constant
 | 
						|
    array as a function parameter, part of a matrix expression, or as a matrix initializer:
 | 
						|
    @code
 | 
						|
        Mat A;
 | 
						|
        A = Mat::zeros(3, 3, CV_32F);
 | 
						|
    @endcode
 | 
						|
    In the example above, a new matrix is allocated only if A is not a 3x3 floating-point matrix.
 | 
						|
    Otherwise, the existing matrix A is filled with zeros.
 | 
						|
    @param rows Number of rows.
 | 
						|
    @param cols Number of columns.
 | 
						|
    @param type Created matrix type.
 | 
						|
     */
 | 
						|
    CV_NODISCARD_STD static MatExpr zeros(int rows, int cols, int type);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param size Alternative to the matrix size specification Size(cols, rows) .
 | 
						|
    @param type Created matrix type.
 | 
						|
    */
 | 
						|
    CV_NODISCARD_STD static MatExpr zeros(Size size, int type);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param ndims Array dimensionality.
 | 
						|
    @param sz Array of integers specifying the array shape.
 | 
						|
    @param type Created matrix type.
 | 
						|
    */
 | 
						|
    CV_NODISCARD_STD static MatExpr zeros(int ndims, const int* sz, int type);
 | 
						|
 | 
						|
    /** @brief Returns an array of all 1's of the specified size and type.
 | 
						|
 | 
						|
    The method returns a Matlab-style 1's array initializer, similarly to Mat::zeros. Note that using
 | 
						|
    this method you can initialize an array with an arbitrary value, using the following Matlab idiom:
 | 
						|
    @code
 | 
						|
        Mat A = Mat::ones(100, 100, CV_8U)*3; // make 100x100 matrix filled with 3.
 | 
						|
    @endcode
 | 
						|
    The above operation does not form a 100x100 matrix of 1's and then multiply it by 3. Instead, it
 | 
						|
    just remembers the scale factor (3 in this case) and use it when actually invoking the matrix
 | 
						|
    initializer.
 | 
						|
    @note In case of multi-channels type, only the first channel will be initialized with 1's, the
 | 
						|
    others will be set to 0's.
 | 
						|
    @param rows Number of rows.
 | 
						|
    @param cols Number of columns.
 | 
						|
    @param type Created matrix type.
 | 
						|
     */
 | 
						|
    CV_NODISCARD_STD static MatExpr ones(int rows, int cols, int type);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param size Alternative to the matrix size specification Size(cols, rows) .
 | 
						|
    @param type Created matrix type.
 | 
						|
    */
 | 
						|
    CV_NODISCARD_STD static MatExpr ones(Size size, int type);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param ndims Array dimensionality.
 | 
						|
    @param sz Array of integers specifying the array shape.
 | 
						|
    @param type Created matrix type.
 | 
						|
    */
 | 
						|
    CV_NODISCARD_STD static MatExpr ones(int ndims, const int* sz, int type);
 | 
						|
 | 
						|
    /** @brief Returns an identity matrix of the specified size and type.
 | 
						|
 | 
						|
    The method returns a Matlab-style identity matrix initializer, similarly to Mat::zeros. Similarly to
 | 
						|
    Mat::ones, you can use a scale operation to create a scaled identity matrix efficiently:
 | 
						|
    @code
 | 
						|
        // make a 4x4 diagonal matrix with 0.1's on the diagonal.
 | 
						|
        Mat A = Mat::eye(4, 4, CV_32F)*0.1;
 | 
						|
    @endcode
 | 
						|
    @note In case of multi-channels type, identity matrix will be initialized only for the first channel,
 | 
						|
    the others will be set to 0's
 | 
						|
    @param rows Number of rows.
 | 
						|
    @param cols Number of columns.
 | 
						|
    @param type Created matrix type.
 | 
						|
     */
 | 
						|
    CV_NODISCARD_STD static MatExpr eye(int rows, int cols, int type);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param size Alternative matrix size specification as Size(cols, rows) .
 | 
						|
    @param type Created matrix type.
 | 
						|
    */
 | 
						|
    CV_NODISCARD_STD static MatExpr eye(Size size, int type);
 | 
						|
 | 
						|
    /** @brief Allocates new array data if needed.
 | 
						|
 | 
						|
    This is one of the key Mat methods. Most new-style OpenCV functions and methods that produce arrays
 | 
						|
    call this method for each output array. The method uses the following algorithm:
 | 
						|
 | 
						|
    -# If the current array shape and the type match the new ones, return immediately. Otherwise,
 | 
						|
       de-reference the previous data by calling Mat::release.
 | 
						|
    -# Initialize the new header.
 | 
						|
    -# Allocate the new data of total()\*elemSize() bytes.
 | 
						|
    -# Allocate the new, associated with the data, reference counter and set it to 1.
 | 
						|
 | 
						|
    Such a scheme makes the memory management robust and efficient at the same time and helps avoid
 | 
						|
    extra typing for you. This means that usually there is no need to explicitly allocate output arrays.
 | 
						|
    That is, instead of writing:
 | 
						|
    @code
 | 
						|
        Mat color;
 | 
						|
        ...
 | 
						|
        Mat gray(color.rows, color.cols, color.depth());
 | 
						|
        cvtColor(color, gray, COLOR_BGR2GRAY);
 | 
						|
    @endcode
 | 
						|
    you can simply write:
 | 
						|
    @code
 | 
						|
        Mat color;
 | 
						|
        ...
 | 
						|
        Mat gray;
 | 
						|
        cvtColor(color, gray, COLOR_BGR2GRAY);
 | 
						|
    @endcode
 | 
						|
    because cvtColor, as well as the most of OpenCV functions, calls Mat::create() for the output array
 | 
						|
    internally.
 | 
						|
    @param rows New number of rows.
 | 
						|
    @param cols New number of columns.
 | 
						|
    @param type New matrix type.
 | 
						|
     */
 | 
						|
    void create(int rows, int cols, int type);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param size Alternative new matrix size specification: Size(cols, rows)
 | 
						|
    @param type New matrix type.
 | 
						|
    */
 | 
						|
    void create(Size size, int type);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param ndims New array dimensionality.
 | 
						|
    @param sizes Array of integers specifying a new array shape.
 | 
						|
    @param type New matrix type.
 | 
						|
    */
 | 
						|
    void create(int ndims, const int* sizes, int type);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param sizes Array of integers specifying a new array shape.
 | 
						|
    @param type New matrix type.
 | 
						|
    */
 | 
						|
    void create(const std::vector<int>& sizes, int type);
 | 
						|
 | 
						|
    /** @brief Increments the reference counter.
 | 
						|
 | 
						|
    The method increments the reference counter associated with the matrix data. If the matrix header
 | 
						|
    points to an external data set (see Mat::Mat ), the reference counter is NULL, and the method has no
 | 
						|
    effect in this case. Normally, to avoid memory leaks, the method should not be called explicitly. It
 | 
						|
    is called implicitly by the matrix assignment operator. The reference counter increment is an atomic
 | 
						|
    operation on the platforms that support it. Thus, it is safe to operate on the same matrices
 | 
						|
    asynchronously in different threads.
 | 
						|
     */
 | 
						|
    void addref();
 | 
						|
 | 
						|
    /** @brief Decrements the reference counter and deallocates the matrix if needed.
 | 
						|
 | 
						|
    The method decrements the reference counter associated with the matrix data. When the reference
 | 
						|
    counter reaches 0, the matrix data is deallocated and the data and the reference counter pointers
 | 
						|
    are set to NULL's. If the matrix header points to an external data set (see Mat::Mat ), the
 | 
						|
    reference counter is NULL, and the method has no effect in this case.
 | 
						|
 | 
						|
    This method can be called manually to force the matrix data deallocation. But since this method is
 | 
						|
    automatically called in the destructor, or by any other method that changes the data pointer, it is
 | 
						|
    usually not needed. The reference counter decrement and check for 0 is an atomic operation on the
 | 
						|
    platforms that support it. Thus, it is safe to operate on the same matrices asynchronously in
 | 
						|
    different threads.
 | 
						|
     */
 | 
						|
    void release();
 | 
						|
 | 
						|
    //! internal use function, consider to use 'release' method instead; deallocates the matrix data
 | 
						|
    void deallocate();
 | 
						|
    //! internal use function; properly re-allocates _size, _step arrays
 | 
						|
    void copySize(const Mat& m);
 | 
						|
 | 
						|
    /** @brief Reserves space for the certain number of rows.
 | 
						|
 | 
						|
    The method reserves space for sz rows. If the matrix already has enough space to store sz rows,
 | 
						|
    nothing happens. If the matrix is reallocated, the first Mat::rows rows are preserved. The method
 | 
						|
    emulates the corresponding method of the STL vector class.
 | 
						|
    @param sz Number of rows.
 | 
						|
     */
 | 
						|
    void reserve(size_t sz);
 | 
						|
 | 
						|
    /** @brief Reserves space for the certain number of bytes.
 | 
						|
 | 
						|
    The method reserves space for sz bytes. If the matrix already has enough space to store sz bytes,
 | 
						|
    nothing happens. If matrix has to be reallocated its previous content could be lost.
 | 
						|
    @param sz Number of bytes.
 | 
						|
    */
 | 
						|
    void reserveBuffer(size_t sz);
 | 
						|
 | 
						|
    /** @brief Changes the number of matrix rows.
 | 
						|
 | 
						|
    The methods change the number of matrix rows. If the matrix is reallocated, the first
 | 
						|
    min(Mat::rows, sz) rows are preserved. The methods emulate the corresponding methods of the STL
 | 
						|
    vector class.
 | 
						|
    @param sz New number of rows.
 | 
						|
     */
 | 
						|
    void resize(size_t sz);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param sz New number of rows.
 | 
						|
    @param s Value assigned to the newly added elements.
 | 
						|
     */
 | 
						|
    void resize(size_t sz, const Scalar& s);
 | 
						|
 | 
						|
    //! internal function
 | 
						|
    void push_back_(const void* elem);
 | 
						|
 | 
						|
    /** @brief Adds elements to the bottom of the matrix.
 | 
						|
 | 
						|
    The methods add one or more elements to the bottom of the matrix. They emulate the corresponding
 | 
						|
    method of the STL vector class. When elem is Mat , its type and the number of columns must be the
 | 
						|
    same as in the container matrix.
 | 
						|
    @param elem Added element(s).
 | 
						|
     */
 | 
						|
    template<typename _Tp> void push_back(const _Tp& elem);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param elem Added element(s).
 | 
						|
    */
 | 
						|
    template<typename _Tp> void push_back(const Mat_<_Tp>& elem);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param elem Added element(s).
 | 
						|
    */
 | 
						|
    template<typename _Tp> void push_back(const std::vector<_Tp>& elem);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param m Added line(s).
 | 
						|
    */
 | 
						|
    void push_back(const Mat& m);
 | 
						|
 | 
						|
    /** @brief Removes elements from the bottom of the matrix.
 | 
						|
 | 
						|
    The method removes one or more rows from the bottom of the matrix.
 | 
						|
    @param nelems Number of removed rows. If it is greater than the total number of rows, an exception
 | 
						|
    is thrown.
 | 
						|
     */
 | 
						|
    void pop_back(size_t nelems=1);
 | 
						|
 | 
						|
    /** @brief Locates the matrix header within a parent matrix.
 | 
						|
 | 
						|
    After you extracted a submatrix from a matrix using Mat::row, Mat::col, Mat::rowRange,
 | 
						|
    Mat::colRange, and others, the resultant submatrix points just to the part of the original big
 | 
						|
    matrix. However, each submatrix contains information (represented by datastart and dataend
 | 
						|
    fields) that helps reconstruct the original matrix size and the position of the extracted
 | 
						|
    submatrix within the original matrix. The method locateROI does exactly that.
 | 
						|
    @param wholeSize Output parameter that contains the size of the whole matrix containing *this*
 | 
						|
    as a part.
 | 
						|
    @param ofs Output parameter that contains an offset of *this* inside the whole matrix.
 | 
						|
     */
 | 
						|
    void locateROI( Size& wholeSize, Point& ofs ) const;
 | 
						|
 | 
						|
    /** @brief Adjusts a submatrix size and position within the parent matrix.
 | 
						|
 | 
						|
    The method is complimentary to Mat::locateROI . The typical use of these functions is to determine
 | 
						|
    the submatrix position within the parent matrix and then shift the position somehow. Typically, it
 | 
						|
    can be required for filtering operations when pixels outside of the ROI should be taken into
 | 
						|
    account. When all the method parameters are positive, the ROI needs to grow in all directions by the
 | 
						|
    specified amount, for example:
 | 
						|
    @code
 | 
						|
        A.adjustROI(2, 2, 2, 2);
 | 
						|
    @endcode
 | 
						|
    In this example, the matrix size is increased by 4 elements in each direction. The matrix is shifted
 | 
						|
    by 2 elements to the left and 2 elements up, which brings in all the necessary pixels for the
 | 
						|
    filtering with the 5x5 kernel.
 | 
						|
 | 
						|
    adjustROI forces the adjusted ROI to be inside of the parent matrix that is boundaries of the
 | 
						|
    adjusted ROI are constrained by boundaries of the parent matrix. For example, if the submatrix A is
 | 
						|
    located in the first row of a parent matrix and you called A.adjustROI(2, 2, 2, 2) then A will not
 | 
						|
    be increased in the upward direction.
 | 
						|
 | 
						|
    The function is used internally by the OpenCV filtering functions, like filter2D , morphological
 | 
						|
    operations, and so on.
 | 
						|
    @param dtop Shift of the top submatrix boundary upwards.
 | 
						|
    @param dbottom Shift of the bottom submatrix boundary downwards.
 | 
						|
    @param dleft Shift of the left submatrix boundary to the left.
 | 
						|
    @param dright Shift of the right submatrix boundary to the right.
 | 
						|
    @sa copyMakeBorder
 | 
						|
     */
 | 
						|
    Mat& adjustROI( int dtop, int dbottom, int dleft, int dright );
 | 
						|
 | 
						|
    /** @brief Extracts a rectangular submatrix.
 | 
						|
 | 
						|
    The operators make a new header for the specified sub-array of \*this . They are the most
 | 
						|
    generalized forms of Mat::row, Mat::col, Mat::rowRange, and Mat::colRange . For example,
 | 
						|
    `A(Range(0, 10), Range::all())` is equivalent to `A.rowRange(0, 10)`. Similarly to all of the above,
 | 
						|
    the operators are O(1) operations, that is, no matrix data is copied.
 | 
						|
    @param rowRange Start and end row of the extracted submatrix. The upper boundary is not included. To
 | 
						|
    select all the rows, use Range::all().
 | 
						|
    @param colRange Start and end column of the extracted submatrix. The upper boundary is not included.
 | 
						|
    To select all the columns, use Range::all().
 | 
						|
     */
 | 
						|
    Mat operator()( Range rowRange, Range colRange ) const;
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param roi Extracted submatrix specified as a rectangle.
 | 
						|
    */
 | 
						|
    Mat operator()( const Rect& roi ) const;
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param ranges Array of selected ranges along each array dimension.
 | 
						|
    */
 | 
						|
    Mat operator()( const Range* ranges ) const;
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param ranges Array of selected ranges along each array dimension.
 | 
						|
    */
 | 
						|
    Mat operator()(const std::vector<Range>& ranges) const;
 | 
						|
 | 
						|
    template<typename _Tp> operator std::vector<_Tp>() const;
 | 
						|
    template<typename _Tp, int n> operator Vec<_Tp, n>() const;
 | 
						|
    template<typename _Tp, int m, int n> operator Matx<_Tp, m, n>() const;
 | 
						|
 | 
						|
    template<typename _Tp, std::size_t _Nm> operator std::array<_Tp, _Nm>() const;
 | 
						|
 | 
						|
    /** @brief Reports whether the matrix is continuous or not.
 | 
						|
 | 
						|
    The method returns true if the matrix elements are stored continuously without gaps at the end of
 | 
						|
    each row. Otherwise, it returns false. Obviously, 1x1 or 1xN matrices are always continuous.
 | 
						|
    Matrices created with Mat::create are always continuous. But if you extract a part of the matrix
 | 
						|
    using Mat::col, Mat::diag, and so on, or constructed a matrix header for externally allocated data,
 | 
						|
    such matrices may no longer have this property.
 | 
						|
 | 
						|
    The continuity flag is stored as a bit in the Mat::flags field and is computed automatically when
 | 
						|
    you construct a matrix header. Thus, the continuity check is a very fast operation, though
 | 
						|
    theoretically it could be done as follows:
 | 
						|
    @code
 | 
						|
        // alternative implementation of Mat::isContinuous()
 | 
						|
        bool myCheckMatContinuity(const Mat& m)
 | 
						|
        {
 | 
						|
            //return (m.flags & Mat::CONTINUOUS_FLAG) != 0;
 | 
						|
            return m.rows == 1 || m.step == m.cols*m.elemSize();
 | 
						|
        }
 | 
						|
    @endcode
 | 
						|
    The method is used in quite a few of OpenCV functions. The point is that element-wise operations
 | 
						|
    (such as arithmetic and logical operations, math functions, alpha blending, color space
 | 
						|
    transformations, and others) do not depend on the image geometry. Thus, if all the input and output
 | 
						|
    arrays are continuous, the functions can process them as very long single-row vectors. The example
 | 
						|
    below illustrates how an alpha-blending function can be implemented:
 | 
						|
    @code
 | 
						|
        template<typename T>
 | 
						|
        void alphaBlendRGBA(const Mat& src1, const Mat& src2, Mat& dst)
 | 
						|
        {
 | 
						|
            const float alpha_scale = (float)std::numeric_limits<T>::max(),
 | 
						|
                        inv_scale = 1.f/alpha_scale;
 | 
						|
 | 
						|
            CV_Assert( src1.type() == src2.type() &&
 | 
						|
                       src1.type() == CV_MAKETYPE(traits::Depth<T>::value, 4) &&
 | 
						|
                       src1.size() == src2.size());
 | 
						|
            Size size = src1.size();
 | 
						|
            dst.create(size, src1.type());
 | 
						|
 | 
						|
            // here is the idiom: check the arrays for continuity and,
 | 
						|
            // if this is the case,
 | 
						|
            // treat the arrays as 1D vectors
 | 
						|
            if( src1.isContinuous() && src2.isContinuous() && dst.isContinuous() )
 | 
						|
            {
 | 
						|
                size.width *= size.height;
 | 
						|
                size.height = 1;
 | 
						|
            }
 | 
						|
            size.width *= 4;
 | 
						|
 | 
						|
            for( int i = 0; i < size.height; i++ )
 | 
						|
            {
 | 
						|
                // when the arrays are continuous,
 | 
						|
                // the outer loop is executed only once
 | 
						|
                const T* ptr1 = src1.ptr<T>(i);
 | 
						|
                const T* ptr2 = src2.ptr<T>(i);
 | 
						|
                T* dptr = dst.ptr<T>(i);
 | 
						|
 | 
						|
                for( int j = 0; j < size.width; j += 4 )
 | 
						|
                {
 | 
						|
                    float alpha = ptr1[j+3]*inv_scale, beta = ptr2[j+3]*inv_scale;
 | 
						|
                    dptr[j] = saturate_cast<T>(ptr1[j]*alpha + ptr2[j]*beta);
 | 
						|
                    dptr[j+1] = saturate_cast<T>(ptr1[j+1]*alpha + ptr2[j+1]*beta);
 | 
						|
                    dptr[j+2] = saturate_cast<T>(ptr1[j+2]*alpha + ptr2[j+2]*beta);
 | 
						|
                    dptr[j+3] = saturate_cast<T>((1 - (1-alpha)*(1-beta))*alpha_scale);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    @endcode
 | 
						|
    This approach, while being very simple, can boost the performance of a simple element-operation by
 | 
						|
    10-20 percents, especially if the image is rather small and the operation is quite simple.
 | 
						|
 | 
						|
    Another OpenCV idiom in this function, a call of Mat::create for the destination array, that
 | 
						|
    allocates the destination array unless it already has the proper size and type. And while the newly
 | 
						|
    allocated arrays are always continuous, you still need to check the destination array because
 | 
						|
    Mat::create does not always allocate a new matrix.
 | 
						|
     */
 | 
						|
    bool isContinuous() const;
 | 
						|
 | 
						|
    //! returns true if the matrix is a submatrix of another matrix
 | 
						|
    bool isSubmatrix() const;
 | 
						|
 | 
						|
    /** @brief Returns the matrix element size in bytes.
 | 
						|
 | 
						|
    The method returns the matrix element size in bytes. For example, if the matrix type is CV_16SC3 ,
 | 
						|
    the method returns 3\*sizeof(short) or 6.
 | 
						|
     */
 | 
						|
    size_t elemSize() const;
 | 
						|
 | 
						|
    /** @brief Returns the size of each matrix element channel in bytes.
 | 
						|
 | 
						|
    The method returns the matrix element channel size in bytes, that is, it ignores the number of
 | 
						|
    channels. For example, if the matrix type is CV_16SC3 , the method returns sizeof(short) or 2.
 | 
						|
     */
 | 
						|
    size_t elemSize1() const;
 | 
						|
 | 
						|
    /** @brief Returns the type of a matrix element.
 | 
						|
 | 
						|
    The method returns a matrix element type. This is an identifier compatible with the CvMat type
 | 
						|
    system, like CV_16SC3 or 16-bit signed 3-channel array, and so on.
 | 
						|
     */
 | 
						|
    int type() const;
 | 
						|
 | 
						|
    /** @brief Returns the depth of a matrix element.
 | 
						|
 | 
						|
    The method returns the identifier of the matrix element depth (the type of each individual channel).
 | 
						|
    For example, for a 16-bit signed element array, the method returns CV_16S . A complete list of
 | 
						|
    matrix types contains the following values:
 | 
						|
    -   CV_8U - 8-bit unsigned integers ( 0..255 )
 | 
						|
    -   CV_8S - 8-bit signed integers ( -128..127 )
 | 
						|
    -   CV_16U - 16-bit unsigned integers ( 0..65535 )
 | 
						|
    -   CV_16S - 16-bit signed integers ( -32768..32767 )
 | 
						|
    -   CV_32S - 32-bit signed integers ( -2147483648..2147483647 )
 | 
						|
    -   CV_32F - 32-bit floating-point numbers ( -FLT_MAX..FLT_MAX, INF, NAN )
 | 
						|
    -   CV_64F - 64-bit floating-point numbers ( -DBL_MAX..DBL_MAX, INF, NAN )
 | 
						|
     */
 | 
						|
    int depth() const;
 | 
						|
 | 
						|
    /** @brief Returns the number of matrix channels.
 | 
						|
 | 
						|
    The method returns the number of matrix channels.
 | 
						|
     */
 | 
						|
    int channels() const;
 | 
						|
 | 
						|
    /** @brief Returns a normalized step.
 | 
						|
 | 
						|
    The method returns a matrix step divided by Mat::elemSize1() . It can be useful to quickly access an
 | 
						|
    arbitrary matrix element.
 | 
						|
     */
 | 
						|
    size_t step1(int i=0) const;
 | 
						|
 | 
						|
    /** @brief Returns true if the array has no elements.
 | 
						|
 | 
						|
    The method returns true if Mat::total() is 0 or if Mat::data is NULL. Because of pop_back() and
 | 
						|
    resize() methods `M.total() == 0` does not imply that `M.data == NULL`.
 | 
						|
     */
 | 
						|
    bool empty() const;
 | 
						|
 | 
						|
    /** @brief Returns the total number of array elements.
 | 
						|
 | 
						|
    The method returns the number of array elements (a number of pixels if the array represents an
 | 
						|
    image).
 | 
						|
     */
 | 
						|
    size_t total() const;
 | 
						|
 | 
						|
    /** @brief Returns the total number of array elements.
 | 
						|
 | 
						|
     The method returns the number of elements within a certain sub-array slice with startDim <= dim < endDim
 | 
						|
     */
 | 
						|
    size_t total(int startDim, int endDim=INT_MAX) const;
 | 
						|
 | 
						|
    /**
 | 
						|
     * @param elemChannels Number of channels or number of columns the matrix should have.
 | 
						|
     *                     For a 2-D matrix, when the matrix has only 1 column, then it should have
 | 
						|
     *                     elemChannels channels; When the matrix has only 1 channel,
 | 
						|
     *                     then it should have elemChannels columns.
 | 
						|
     *                     For a 3-D matrix, it should have only one channel. Furthermore,
 | 
						|
     *                     if the number of planes is not one, then the number of rows
 | 
						|
     *                     within every plane has to be 1; if the number of rows within
 | 
						|
     *                     every plane is not 1, then the number of planes has to be 1.
 | 
						|
     * @param depth The depth the matrix should have. Set it to -1 when any depth is fine.
 | 
						|
     * @param requireContinuous Set it to true to require the matrix to be continuous
 | 
						|
     * @return -1 if the requirement is not satisfied.
 | 
						|
     *         Otherwise, it returns the number of elements in the matrix. Note
 | 
						|
     *         that an element may have multiple channels.
 | 
						|
     *
 | 
						|
     * The following code demonstrates its usage for a 2-d matrix:
 | 
						|
     * @snippet snippets/core_mat_checkVector.cpp example-2d
 | 
						|
     *
 | 
						|
     * The following code demonstrates its usage for a 3-d matrix:
 | 
						|
     * @snippet snippets/core_mat_checkVector.cpp example-3d
 | 
						|
     */
 | 
						|
    int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const;
 | 
						|
 | 
						|
    /** @brief Returns a pointer to the specified matrix row.
 | 
						|
 | 
						|
    The methods return `uchar*` or typed pointer to the specified matrix row. See the sample in
 | 
						|
    Mat::isContinuous to know how to use these methods.
 | 
						|
    @param i0 A 0-based row index.
 | 
						|
     */
 | 
						|
    uchar* ptr(int i0=0);
 | 
						|
    /** @overload */
 | 
						|
    const uchar* ptr(int i0=0) const;
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param row Index along the dimension 0
 | 
						|
    @param col Index along the dimension 1
 | 
						|
    */
 | 
						|
    uchar* ptr(int row, int col);
 | 
						|
    /** @overload
 | 
						|
    @param row Index along the dimension 0
 | 
						|
    @param col Index along the dimension 1
 | 
						|
    */
 | 
						|
    const uchar* ptr(int row, int col) const;
 | 
						|
 | 
						|
    /** @overload */
 | 
						|
    uchar* ptr(int i0, int i1, int i2);
 | 
						|
    /** @overload */
 | 
						|
    const uchar* ptr(int i0, int i1, int i2) const;
 | 
						|
 | 
						|
    /** @overload */
 | 
						|
    uchar* ptr(const int* idx);
 | 
						|
    /** @overload */
 | 
						|
    const uchar* ptr(const int* idx) const;
 | 
						|
    /** @overload */
 | 
						|
    template<int n> uchar* ptr(const Vec<int, n>& idx);
 | 
						|
    /** @overload */
 | 
						|
    template<int n> const uchar* ptr(const Vec<int, n>& idx) const;
 | 
						|
 | 
						|
    /** @overload */
 | 
						|
    template<typename _Tp> _Tp* ptr(int i0=0);
 | 
						|
    /** @overload */
 | 
						|
    template<typename _Tp> const _Tp* ptr(int i0=0) const;
 | 
						|
    /** @overload
 | 
						|
    @param row Index along the dimension 0
 | 
						|
    @param col Index along the dimension 1
 | 
						|
    */
 | 
						|
    template<typename _Tp> _Tp* ptr(int row, int col);
 | 
						|
    /** @overload
 | 
						|
    @param row Index along the dimension 0
 | 
						|
    @param col Index along the dimension 1
 | 
						|
    */
 | 
						|
    template<typename _Tp> const _Tp* ptr(int row, int col) const;
 | 
						|
    /** @overload */
 | 
						|
    template<typename _Tp> _Tp* ptr(int i0, int i1, int i2);
 | 
						|
    /** @overload */
 | 
						|
    template<typename _Tp> const _Tp* ptr(int i0, int i1, int i2) const;
 | 
						|
    /** @overload */
 | 
						|
    template<typename _Tp> _Tp* ptr(const int* idx);
 | 
						|
    /** @overload */
 | 
						|
    template<typename _Tp> const _Tp* ptr(const int* idx) const;
 | 
						|
    /** @overload */
 | 
						|
    template<typename _Tp, int n> _Tp* ptr(const Vec<int, n>& idx);
 | 
						|
    /** @overload */
 | 
						|
    template<typename _Tp, int n> const _Tp* ptr(const Vec<int, n>& idx) const;
 | 
						|
 | 
						|
    /** @brief Returns a reference to the specified array element.
 | 
						|
 | 
						|
    The template methods return a reference to the specified array element. For the sake of higher
 | 
						|
    performance, the index range checks are only performed in the Debug configuration.
 | 
						|
 | 
						|
    Note that the variants with a single index (i) can be used to access elements of single-row or
 | 
						|
    single-column 2-dimensional arrays. That is, if, for example, A is a 1 x N floating-point matrix and
 | 
						|
    B is an M x 1 integer matrix, you can simply write `A.at<float>(k+4)` and `B.at<int>(2*i+1)`
 | 
						|
    instead of `A.at<float>(0,k+4)` and `B.at<int>(2*i+1,0)`, respectively.
 | 
						|
 | 
						|
    The example below initializes a Hilbert matrix:
 | 
						|
    @code
 | 
						|
        Mat H(100, 100, CV_64F);
 | 
						|
        for(int i = 0; i < H.rows; i++)
 | 
						|
            for(int j = 0; j < H.cols; j++)
 | 
						|
                H.at<double>(i,j)=1./(i+j+1);
 | 
						|
    @endcode
 | 
						|
 | 
						|
    Keep in mind that the size identifier used in the at operator cannot be chosen at random. It depends
 | 
						|
    on the image from which you are trying to retrieve the data. The table below gives a better insight in this:
 | 
						|
     - If matrix is of type `CV_8U` then use `Mat.at<uchar>(y,x)`.
 | 
						|
     - If matrix is of type `CV_8S` then use `Mat.at<schar>(y,x)`.
 | 
						|
     - If matrix is of type `CV_16U` then use `Mat.at<ushort>(y,x)`.
 | 
						|
     - If matrix is of type `CV_16S` then use `Mat.at<short>(y,x)`.
 | 
						|
     - If matrix is of type `CV_32S`  then use `Mat.at<int>(y,x)`.
 | 
						|
     - If matrix is of type `CV_32F`  then use `Mat.at<float>(y,x)`.
 | 
						|
     - If matrix is of type `CV_64F` then use `Mat.at<double>(y,x)`.
 | 
						|
 | 
						|
    @param i0 Index along the dimension 0
 | 
						|
     */
 | 
						|
    template<typename _Tp> _Tp& at(int i0=0);
 | 
						|
    /** @overload
 | 
						|
    @param i0 Index along the dimension 0
 | 
						|
    */
 | 
						|
    template<typename _Tp> const _Tp& at(int i0=0) const;
 | 
						|
    /** @overload
 | 
						|
    @param row Index along the dimension 0
 | 
						|
    @param col Index along the dimension 1
 | 
						|
    */
 | 
						|
    template<typename _Tp> _Tp& at(int row, int col);
 | 
						|
    /** @overload
 | 
						|
    @param row Index along the dimension 0
 | 
						|
    @param col Index along the dimension 1
 | 
						|
    */
 | 
						|
    template<typename _Tp> const _Tp& at(int row, int col) const;
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param i0 Index along the dimension 0
 | 
						|
    @param i1 Index along the dimension 1
 | 
						|
    @param i2 Index along the dimension 2
 | 
						|
    */
 | 
						|
    template<typename _Tp> _Tp& at(int i0, int i1, int i2);
 | 
						|
    /** @overload
 | 
						|
    @param i0 Index along the dimension 0
 | 
						|
    @param i1 Index along the dimension 1
 | 
						|
    @param i2 Index along the dimension 2
 | 
						|
    */
 | 
						|
    template<typename _Tp> const _Tp& at(int i0, int i1, int i2) const;
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param idx Array of Mat::dims indices.
 | 
						|
    */
 | 
						|
    template<typename _Tp> _Tp& at(const int* idx);
 | 
						|
    /** @overload
 | 
						|
    @param idx Array of Mat::dims indices.
 | 
						|
    */
 | 
						|
    template<typename _Tp> const _Tp& at(const int* idx) const;
 | 
						|
 | 
						|
    /** @overload */
 | 
						|
    template<typename _Tp, int n> _Tp& at(const Vec<int, n>& idx);
 | 
						|
    /** @overload */
 | 
						|
    template<typename _Tp, int n> const _Tp& at(const Vec<int, n>& idx) const;
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    special versions for 2D arrays (especially convenient for referencing image pixels)
 | 
						|
    @param pt Element position specified as Point(j,i) .
 | 
						|
    */
 | 
						|
    template<typename _Tp> _Tp& at(Point pt);
 | 
						|
    /** @overload
 | 
						|
    special versions for 2D arrays (especially convenient for referencing image pixels)
 | 
						|
    @param pt Element position specified as Point(j,i) .
 | 
						|
    */
 | 
						|
    template<typename _Tp> const _Tp& at(Point pt) const;
 | 
						|
 | 
						|
    /** @brief Returns the matrix iterator and sets it to the first matrix element.
 | 
						|
 | 
						|
    The methods return the matrix read-only or read-write iterators. The use of matrix iterators is very
 | 
						|
    similar to the use of bi-directional STL iterators. In the example below, the alpha blending
 | 
						|
    function is rewritten using the matrix iterators:
 | 
						|
    @code
 | 
						|
        template<typename T>
 | 
						|
        void alphaBlendRGBA(const Mat& src1, const Mat& src2, Mat& dst)
 | 
						|
        {
 | 
						|
            typedef Vec<T, 4> VT;
 | 
						|
 | 
						|
            const float alpha_scale = (float)std::numeric_limits<T>::max(),
 | 
						|
                        inv_scale = 1.f/alpha_scale;
 | 
						|
 | 
						|
            CV_Assert( src1.type() == src2.type() &&
 | 
						|
                       src1.type() == traits::Type<VT>::value &&
 | 
						|
                       src1.size() == src2.size());
 | 
						|
            Size size = src1.size();
 | 
						|
            dst.create(size, src1.type());
 | 
						|
 | 
						|
            MatConstIterator_<VT> it1 = src1.begin<VT>(), it1_end = src1.end<VT>();
 | 
						|
            MatConstIterator_<VT> it2 = src2.begin<VT>();
 | 
						|
            MatIterator_<VT> dst_it = dst.begin<VT>();
 | 
						|
 | 
						|
            for( ; it1 != it1_end; ++it1, ++it2, ++dst_it )
 | 
						|
            {
 | 
						|
                VT pix1 = *it1, pix2 = *it2;
 | 
						|
                float alpha = pix1[3]*inv_scale, beta = pix2[3]*inv_scale;
 | 
						|
                *dst_it = VT(saturate_cast<T>(pix1[0]*alpha + pix2[0]*beta),
 | 
						|
                             saturate_cast<T>(pix1[1]*alpha + pix2[1]*beta),
 | 
						|
                             saturate_cast<T>(pix1[2]*alpha + pix2[2]*beta),
 | 
						|
                             saturate_cast<T>((1 - (1-alpha)*(1-beta))*alpha_scale));
 | 
						|
            }
 | 
						|
        }
 | 
						|
    @endcode
 | 
						|
     */
 | 
						|
    template<typename _Tp> MatIterator_<_Tp> begin();
 | 
						|
    template<typename _Tp> MatConstIterator_<_Tp> begin() const;
 | 
						|
 | 
						|
    /** @brief Same as begin() but for inverse traversal
 | 
						|
     */
 | 
						|
    template<typename _Tp> std::reverse_iterator<MatIterator_<_Tp>> rbegin();
 | 
						|
    template<typename _Tp> std::reverse_iterator<MatConstIterator_<_Tp>> rbegin() const;
 | 
						|
 | 
						|
    /** @brief Returns the matrix iterator and sets it to the after-last matrix element.
 | 
						|
 | 
						|
    The methods return the matrix read-only or read-write iterators, set to the point following the last
 | 
						|
    matrix element.
 | 
						|
     */
 | 
						|
    template<typename _Tp> MatIterator_<_Tp> end();
 | 
						|
    template<typename _Tp> MatConstIterator_<_Tp> end() const;
 | 
						|
 | 
						|
    /** @brief Same as end() but for inverse traversal
 | 
						|
     */
 | 
						|
    template<typename _Tp> std::reverse_iterator< MatIterator_<_Tp>> rend();
 | 
						|
    template<typename _Tp> std::reverse_iterator< MatConstIterator_<_Tp>> rend() const;
 | 
						|
 | 
						|
 | 
						|
    /** @brief Runs the given functor over all matrix elements in parallel.
 | 
						|
 | 
						|
    The operation passed as argument has to be a function pointer, a function object or a lambda(C++11).
 | 
						|
 | 
						|
    Example 1. All of the operations below put 0xFF the first channel of all matrix elements:
 | 
						|
    @code
 | 
						|
        Mat image(1920, 1080, CV_8UC3);
 | 
						|
        typedef cv::Point3_<uint8_t> Pixel;
 | 
						|
 | 
						|
        // first. raw pointer access.
 | 
						|
        for (int r = 0; r < image.rows; ++r) {
 | 
						|
            Pixel* ptr = image.ptr<Pixel>(r, 0);
 | 
						|
            const Pixel* ptr_end = ptr + image.cols;
 | 
						|
            for (; ptr != ptr_end; ++ptr) {
 | 
						|
                ptr->x = 255;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // Using MatIterator. (Simple but there are a Iterator's overhead)
 | 
						|
        for (Pixel &p : cv::Mat_<Pixel>(image)) {
 | 
						|
            p.x = 255;
 | 
						|
        }
 | 
						|
 | 
						|
        // Parallel execution with function object.
 | 
						|
        struct Operator {
 | 
						|
            void operator ()(Pixel &pixel, const int * position) {
 | 
						|
                pixel.x = 255;
 | 
						|
            }
 | 
						|
        };
 | 
						|
        image.forEach<Pixel>(Operator());
 | 
						|
 | 
						|
        // Parallel execution using C++11 lambda.
 | 
						|
        image.forEach<Pixel>([](Pixel &p, const int * position) -> void {
 | 
						|
            p.x = 255;
 | 
						|
        });
 | 
						|
    @endcode
 | 
						|
    Example 2. Using the pixel's position:
 | 
						|
    @code
 | 
						|
        // Creating 3D matrix (255 x 255 x 255) typed uint8_t
 | 
						|
        // and initialize all elements by the value which equals elements position.
 | 
						|
        // i.e. pixels (x,y,z) = (1,2,3) is (b,g,r) = (1,2,3).
 | 
						|
 | 
						|
        int sizes[] = { 255, 255, 255 };
 | 
						|
        typedef cv::Point3_<uint8_t> Pixel;
 | 
						|
 | 
						|
        Mat_<Pixel> image = Mat::zeros(3, sizes, CV_8UC3);
 | 
						|
 | 
						|
        image.forEach<Pixel>([&](Pixel& pixel, const int position[]) -> void {
 | 
						|
            pixel.x = position[0];
 | 
						|
            pixel.y = position[1];
 | 
						|
            pixel.z = position[2];
 | 
						|
        });
 | 
						|
    @endcode
 | 
						|
     */
 | 
						|
    template<typename _Tp, typename Functor> void forEach(const Functor& operation);
 | 
						|
    /** @overload */
 | 
						|
    template<typename _Tp, typename Functor> void forEach(const Functor& operation) const;
 | 
						|
 | 
						|
    Mat(Mat&& m);
 | 
						|
    Mat& operator = (Mat&& m);
 | 
						|
 | 
						|
    enum { MAGIC_VAL  = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG };
 | 
						|
    enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 };
 | 
						|
 | 
						|
    /*! includes several bit-fields:
 | 
						|
         - the magic signature
 | 
						|
         - continuity flag
 | 
						|
         - depth
 | 
						|
         - number of channels
 | 
						|
     */
 | 
						|
    int flags;
 | 
						|
    //! the matrix dimensionality, >= 2
 | 
						|
    int dims;
 | 
						|
    //! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions
 | 
						|
    int rows, cols;
 | 
						|
    //! pointer to the data
 | 
						|
    uchar* data;
 | 
						|
 | 
						|
    //! helper fields used in locateROI and adjustROI
 | 
						|
    const uchar* datastart;
 | 
						|
    const uchar* dataend;
 | 
						|
    const uchar* datalimit;
 | 
						|
 | 
						|
    //! custom allocator
 | 
						|
    MatAllocator* allocator;
 | 
						|
    //! and the standard allocator
 | 
						|
    static MatAllocator* getStdAllocator();
 | 
						|
    static MatAllocator* getDefaultAllocator();
 | 
						|
    static void setDefaultAllocator(MatAllocator* allocator);
 | 
						|
 | 
						|
    //! internal use method: updates the continuity flag
 | 
						|
    void updateContinuityFlag();
 | 
						|
 | 
						|
    //! interaction with UMat
 | 
						|
    UMatData* u;
 | 
						|
 | 
						|
    MatSize size;
 | 
						|
    MatStep step;
 | 
						|
 | 
						|
protected:
 | 
						|
    template<typename _Tp, typename Functor> void forEach_impl(const Functor& operation);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
///////////////////////////////// Mat_<_Tp> ////////////////////////////////////
 | 
						|
 | 
						|
/** @brief Template matrix class derived from Mat
 | 
						|
 | 
						|
@code{.cpp}
 | 
						|
    template<typename _Tp> class Mat_ : public Mat
 | 
						|
    {
 | 
						|
    public:
 | 
						|
        // ... some specific methods
 | 
						|
        //         and
 | 
						|
        // no new extra fields
 | 
						|
    };
 | 
						|
@endcode
 | 
						|
The class `Mat_<_Tp>` is a *thin* template wrapper on top of the Mat class. It does not have any
 | 
						|
extra data fields. Nor this class nor Mat has any virtual methods. Thus, references or pointers to
 | 
						|
these two classes can be freely but carefully converted one to another. For example:
 | 
						|
@code{.cpp}
 | 
						|
    // create a 100x100 8-bit matrix
 | 
						|
    Mat M(100,100,CV_8U);
 | 
						|
    // this will be compiled fine. no any data conversion will be done.
 | 
						|
    Mat_<float>& M1 = (Mat_<float>&)M;
 | 
						|
    // the program is likely to crash at the statement below
 | 
						|
    M1(99,99) = 1.f;
 | 
						|
@endcode
 | 
						|
While Mat is sufficient in most cases, Mat_ can be more convenient if you use a lot of element
 | 
						|
access operations and if you know matrix type at the compilation time. Note that
 | 
						|
`Mat::at(int y,int x)` and `Mat_::operator()(int y,int x)` do absolutely the same
 | 
						|
and run at the same speed, but the latter is certainly shorter:
 | 
						|
@code{.cpp}
 | 
						|
    Mat_<double> M(20,20);
 | 
						|
    for(int i = 0; i < M.rows; i++)
 | 
						|
        for(int j = 0; j < M.cols; j++)
 | 
						|
            M(i,j) = 1./(i+j+1);
 | 
						|
    Mat E, V;
 | 
						|
    eigen(M,E,V);
 | 
						|
    cout << E.at<double>(0,0)/E.at<double>(M.rows-1,0);
 | 
						|
@endcode
 | 
						|
To use Mat_ for multi-channel images/matrices, pass Vec as a Mat_ parameter:
 | 
						|
@code{.cpp}
 | 
						|
    // allocate a 320x240 color image and fill it with green (in RGB space)
 | 
						|
    Mat_<Vec3b> img(240, 320, Vec3b(0,255,0));
 | 
						|
    // now draw a diagonal white line
 | 
						|
    for(int i = 0; i < 100; i++)
 | 
						|
        img(i,i)=Vec3b(255,255,255);
 | 
						|
    // and now scramble the 2nd (red) channel of each pixel
 | 
						|
    for(int i = 0; i < img.rows; i++)
 | 
						|
        for(int j = 0; j < img.cols; j++)
 | 
						|
            img(i,j)[2] ^= (uchar)(i ^ j);
 | 
						|
@endcode
 | 
						|
Mat_ is fully compatible with C++11 range-based for loop. For example such loop
 | 
						|
can be used to safely apply look-up table:
 | 
						|
@code{.cpp}
 | 
						|
void applyTable(Mat_<uchar>& I, const uchar* const table)
 | 
						|
{
 | 
						|
    for(auto& pixel : I)
 | 
						|
    {
 | 
						|
        pixel = table[pixel];
 | 
						|
    }
 | 
						|
}
 | 
						|
@endcode
 | 
						|
 */
 | 
						|
template<typename _Tp> class Mat_ : public Mat
 | 
						|
{
 | 
						|
public:
 | 
						|
    typedef _Tp value_type;
 | 
						|
    typedef typename DataType<_Tp>::channel_type channel_type;
 | 
						|
    typedef MatIterator_<_Tp> iterator;
 | 
						|
    typedef MatConstIterator_<_Tp> const_iterator;
 | 
						|
 | 
						|
    //! default constructor
 | 
						|
    Mat_() CV_NOEXCEPT;
 | 
						|
    //! equivalent to Mat(_rows, _cols, DataType<_Tp>::type)
 | 
						|
    Mat_(int _rows, int _cols);
 | 
						|
    //! constructor that sets each matrix element to specified value
 | 
						|
    Mat_(int _rows, int _cols, const _Tp& value);
 | 
						|
    //! equivalent to Mat(_size, DataType<_Tp>::type)
 | 
						|
    explicit Mat_(Size _size);
 | 
						|
    //! constructor that sets each matrix element to specified value
 | 
						|
    Mat_(Size _size, const _Tp& value);
 | 
						|
    //! n-dim array constructor
 | 
						|
    Mat_(int _ndims, const int* _sizes);
 | 
						|
    //! n-dim array constructor that sets each matrix element to specified value
 | 
						|
    Mat_(int _ndims, const int* _sizes, const _Tp& value);
 | 
						|
    //! copy/conversion constructor. If m is of different type, it's converted
 | 
						|
    Mat_(const Mat& m);
 | 
						|
    //! copy constructor
 | 
						|
    Mat_(const Mat_& m);
 | 
						|
    //! constructs a matrix on top of user-allocated data. step is in bytes(!!!), regardless of the type
 | 
						|
    Mat_(int _rows, int _cols, _Tp* _data, size_t _step=AUTO_STEP);
 | 
						|
    //! constructs n-dim matrix on top of user-allocated data. steps are in bytes(!!!), regardless of the type
 | 
						|
    Mat_(int _ndims, const int* _sizes, _Tp* _data, const size_t* _steps=0);
 | 
						|
    //! selects a submatrix
 | 
						|
    Mat_(const Mat_& m, const Range& rowRange, const Range& colRange=Range::all());
 | 
						|
    //! selects a submatrix
 | 
						|
    Mat_(const Mat_& m, const Rect& roi);
 | 
						|
    //! selects a submatrix, n-dim version
 | 
						|
    Mat_(const Mat_& m, const Range* ranges);
 | 
						|
    //! selects a submatrix, n-dim version
 | 
						|
    Mat_(const Mat_& m, const std::vector<Range>& ranges);
 | 
						|
    //! from a matrix expression
 | 
						|
    explicit Mat_(const MatExpr& e);
 | 
						|
    //! makes a matrix out of Vec, std::vector, Point_ or Point3_. The matrix will have a single column
 | 
						|
    explicit Mat_(const std::vector<_Tp>& vec, bool copyData=false);
 | 
						|
    template<int n> explicit Mat_(const Vec<typename DataType<_Tp>::channel_type, n>& vec, bool copyData=true);
 | 
						|
    template<int m, int n> explicit Mat_(const Matx<typename DataType<_Tp>::channel_type, m, n>& mtx, bool copyData=true);
 | 
						|
    explicit Mat_(const Point_<typename DataType<_Tp>::channel_type>& pt, bool copyData=true);
 | 
						|
    explicit Mat_(const Point3_<typename DataType<_Tp>::channel_type>& pt, bool copyData=true);
 | 
						|
    explicit Mat_(const MatCommaInitializer_<_Tp>& commaInitializer);
 | 
						|
 | 
						|
    Mat_(std::initializer_list<_Tp> values);
 | 
						|
    explicit Mat_(const std::initializer_list<int> sizes, const std::initializer_list<_Tp> values);
 | 
						|
 | 
						|
    template <std::size_t _Nm> explicit Mat_(const std::array<_Tp, _Nm>& arr, bool copyData=false);
 | 
						|
 | 
						|
    Mat_& operator = (const Mat& m);
 | 
						|
    Mat_& operator = (const Mat_& m);
 | 
						|
    //! set all the elements to s.
 | 
						|
    Mat_& operator = (const _Tp& s);
 | 
						|
    //! assign a matrix expression
 | 
						|
    Mat_& operator = (const MatExpr& e);
 | 
						|
 | 
						|
    //! iterators; they are smart enough to skip gaps in the end of rows
 | 
						|
    iterator begin();
 | 
						|
    iterator end();
 | 
						|
    const_iterator begin() const;
 | 
						|
    const_iterator end() const;
 | 
						|
 | 
						|
    //reverse iterators
 | 
						|
    std::reverse_iterator<iterator> rbegin();
 | 
						|
    std::reverse_iterator<iterator> rend();
 | 
						|
    std::reverse_iterator<const_iterator> rbegin() const;
 | 
						|
    std::reverse_iterator<const_iterator> rend() const;
 | 
						|
 | 
						|
    //! template methods for for operation over all matrix elements.
 | 
						|
    // the operations take care of skipping gaps in the end of rows (if any)
 | 
						|
    template<typename Functor> void forEach(const Functor& operation);
 | 
						|
    template<typename Functor> void forEach(const Functor& operation) const;
 | 
						|
 | 
						|
    //! equivalent to Mat::create(_rows, _cols, DataType<_Tp>::type)
 | 
						|
    void create(int _rows, int _cols);
 | 
						|
    //! equivalent to Mat::create(_size, DataType<_Tp>::type)
 | 
						|
    void create(Size _size);
 | 
						|
    //! equivalent to Mat::create(_ndims, _sizes, DatType<_Tp>::type)
 | 
						|
    void create(int _ndims, const int* _sizes);
 | 
						|
    //! equivalent to Mat::release()
 | 
						|
    void release();
 | 
						|
    //! cross-product
 | 
						|
    Mat_ cross(const Mat_& m) const;
 | 
						|
    //! data type conversion
 | 
						|
    template<typename T2> operator Mat_<T2>() const;
 | 
						|
    //! overridden forms of Mat::row() etc.
 | 
						|
    Mat_ row(int y) const;
 | 
						|
    Mat_ col(int x) const;
 | 
						|
    Mat_ diag(int d=0) const;
 | 
						|
    CV_NODISCARD_STD Mat_ clone() const;
 | 
						|
 | 
						|
    //! overridden forms of Mat::elemSize() etc.
 | 
						|
    size_t elemSize() const;
 | 
						|
    size_t elemSize1() const;
 | 
						|
    int type() const;
 | 
						|
    int depth() const;
 | 
						|
    int channels() const;
 | 
						|
    size_t step1(int i=0) const;
 | 
						|
    //! returns step()/sizeof(_Tp)
 | 
						|
    size_t stepT(int i=0) const;
 | 
						|
 | 
						|
    //! overridden forms of Mat::zeros() etc. Data type is omitted, of course
 | 
						|
    CV_NODISCARD_STD static MatExpr zeros(int rows, int cols);
 | 
						|
    CV_NODISCARD_STD static MatExpr zeros(Size size);
 | 
						|
    CV_NODISCARD_STD static MatExpr zeros(int _ndims, const int* _sizes);
 | 
						|
    CV_NODISCARD_STD static MatExpr ones(int rows, int cols);
 | 
						|
    CV_NODISCARD_STD static MatExpr ones(Size size);
 | 
						|
    CV_NODISCARD_STD static MatExpr ones(int _ndims, const int* _sizes);
 | 
						|
    CV_NODISCARD_STD static MatExpr eye(int rows, int cols);
 | 
						|
    CV_NODISCARD_STD static MatExpr eye(Size size);
 | 
						|
 | 
						|
    //! some more overridden methods
 | 
						|
    Mat_& adjustROI( int dtop, int dbottom, int dleft, int dright );
 | 
						|
    Mat_ operator()( const Range& rowRange, const Range& colRange ) const;
 | 
						|
    Mat_ operator()( const Rect& roi ) const;
 | 
						|
    Mat_ operator()( const Range* ranges ) const;
 | 
						|
    Mat_ operator()(const std::vector<Range>& ranges) const;
 | 
						|
 | 
						|
    //! more convenient forms of row and element access operators
 | 
						|
    _Tp* operator [](int y);
 | 
						|
    const _Tp* operator [](int y) const;
 | 
						|
 | 
						|
    //! returns reference to the specified element
 | 
						|
    _Tp& operator ()(const int* idx);
 | 
						|
    //! returns read-only reference to the specified element
 | 
						|
    const _Tp& operator ()(const int* idx) const;
 | 
						|
 | 
						|
    //! returns reference to the specified element
 | 
						|
    template<int n> _Tp& operator ()(const Vec<int, n>& idx);
 | 
						|
    //! returns read-only reference to the specified element
 | 
						|
    template<int n> const _Tp& operator ()(const Vec<int, n>& idx) const;
 | 
						|
 | 
						|
    //! returns reference to the specified element (1D case)
 | 
						|
    _Tp& operator ()(int idx0);
 | 
						|
    //! returns read-only reference to the specified element (1D case)
 | 
						|
    const _Tp& operator ()(int idx0) const;
 | 
						|
    //! returns reference to the specified element (2D case)
 | 
						|
    _Tp& operator ()(int row, int col);
 | 
						|
    //! returns read-only reference to the specified element (2D case)
 | 
						|
    const _Tp& operator ()(int row, int col) const;
 | 
						|
    //! returns reference to the specified element (3D case)
 | 
						|
    _Tp& operator ()(int idx0, int idx1, int idx2);
 | 
						|
    //! returns read-only reference to the specified element (3D case)
 | 
						|
    const _Tp& operator ()(int idx0, int idx1, int idx2) const;
 | 
						|
 | 
						|
    _Tp& operator ()(Point pt);
 | 
						|
    const _Tp& operator ()(Point pt) const;
 | 
						|
 | 
						|
    //! conversion to vector.
 | 
						|
    operator std::vector<_Tp>() const;
 | 
						|
 | 
						|
    //! conversion to array.
 | 
						|
    template<std::size_t _Nm> operator std::array<_Tp, _Nm>() const;
 | 
						|
 | 
						|
    //! conversion to Vec
 | 
						|
    template<int n> operator Vec<typename DataType<_Tp>::channel_type, n>() const;
 | 
						|
    //! conversion to Matx
 | 
						|
    template<int m, int n> operator Matx<typename DataType<_Tp>::channel_type, m, n>() const;
 | 
						|
 | 
						|
    Mat_(Mat_&& m);
 | 
						|
    Mat_& operator = (Mat_&& m);
 | 
						|
 | 
						|
    Mat_(Mat&& m);
 | 
						|
    Mat_& operator = (Mat&& m);
 | 
						|
 | 
						|
    Mat_(MatExpr&& e);
 | 
						|
};
 | 
						|
 | 
						|
typedef Mat_<uchar> Mat1b;
 | 
						|
typedef Mat_<Vec2b> Mat2b;
 | 
						|
typedef Mat_<Vec3b> Mat3b;
 | 
						|
typedef Mat_<Vec4b> Mat4b;
 | 
						|
 | 
						|
typedef Mat_<short> Mat1s;
 | 
						|
typedef Mat_<Vec2s> Mat2s;
 | 
						|
typedef Mat_<Vec3s> Mat3s;
 | 
						|
typedef Mat_<Vec4s> Mat4s;
 | 
						|
 | 
						|
typedef Mat_<ushort> Mat1w;
 | 
						|
typedef Mat_<Vec2w> Mat2w;
 | 
						|
typedef Mat_<Vec3w> Mat3w;
 | 
						|
typedef Mat_<Vec4w> Mat4w;
 | 
						|
 | 
						|
typedef Mat_<int>   Mat1i;
 | 
						|
typedef Mat_<Vec2i> Mat2i;
 | 
						|
typedef Mat_<Vec3i> Mat3i;
 | 
						|
typedef Mat_<Vec4i> Mat4i;
 | 
						|
 | 
						|
typedef Mat_<float> Mat1f;
 | 
						|
typedef Mat_<Vec2f> Mat2f;
 | 
						|
typedef Mat_<Vec3f> Mat3f;
 | 
						|
typedef Mat_<Vec4f> Mat4f;
 | 
						|
 | 
						|
typedef Mat_<double> Mat1d;
 | 
						|
typedef Mat_<Vec2d> Mat2d;
 | 
						|
typedef Mat_<Vec3d> Mat3d;
 | 
						|
typedef Mat_<Vec4d> Mat4d;
 | 
						|
 | 
						|
/** @todo document */
 | 
						|
class CV_EXPORTS UMat
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! default constructor
 | 
						|
    UMat(UMatUsageFlags usageFlags = USAGE_DEFAULT) CV_NOEXCEPT;
 | 
						|
    //! constructs 2D matrix of the specified size and type
 | 
						|
    // (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
 | 
						|
    UMat(int rows, int cols, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
 | 
						|
    UMat(Size size, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
 | 
						|
    //! constructs 2D matrix and fills it with the specified value _s.
 | 
						|
    UMat(int rows, int cols, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT);
 | 
						|
    UMat(Size size, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT);
 | 
						|
 | 
						|
    //! constructs n-dimensional matrix
 | 
						|
    UMat(int ndims, const int* sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
 | 
						|
    UMat(int ndims, const int* sizes, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT);
 | 
						|
 | 
						|
    //! copy constructor
 | 
						|
    UMat(const UMat& m);
 | 
						|
 | 
						|
    //! creates a matrix header for a part of the bigger matrix
 | 
						|
    UMat(const UMat& m, const Range& rowRange, const Range& colRange=Range::all());
 | 
						|
    UMat(const UMat& m, const Rect& roi);
 | 
						|
    UMat(const UMat& m, const Range* ranges);
 | 
						|
    UMat(const UMat& m, const std::vector<Range>& ranges);
 | 
						|
 | 
						|
    // FIXIT copyData=false is not implemented, drop this in favor of cv::Mat (OpenCV 5.0)
 | 
						|
    //! builds matrix from std::vector with or without copying the data
 | 
						|
    template<typename _Tp> explicit UMat(const std::vector<_Tp>& vec, bool copyData=false);
 | 
						|
 | 
						|
    //! destructor - calls release()
 | 
						|
    ~UMat();
 | 
						|
    //! assignment operators
 | 
						|
    UMat& operator = (const UMat& m);
 | 
						|
 | 
						|
    Mat getMat(AccessFlag flags) const;
 | 
						|
 | 
						|
    //! returns a new matrix header for the specified row
 | 
						|
    UMat row(int y) const;
 | 
						|
    //! returns a new matrix header for the specified column
 | 
						|
    UMat col(int x) const;
 | 
						|
    //! ... for the specified row span
 | 
						|
    UMat rowRange(int startrow, int endrow) const;
 | 
						|
    UMat rowRange(const Range& r) const;
 | 
						|
    //! ... for the specified column span
 | 
						|
    UMat colRange(int startcol, int endcol) const;
 | 
						|
    UMat colRange(const Range& r) const;
 | 
						|
    //! ... for the specified diagonal
 | 
						|
    //! (d=0 - the main diagonal,
 | 
						|
    //!  >0 - a diagonal from the upper half,
 | 
						|
    //!  <0 - a diagonal from the lower half)
 | 
						|
    UMat diag(int d=0) const;
 | 
						|
    //! constructs a square diagonal matrix which main diagonal is vector "d"
 | 
						|
    CV_NODISCARD_STD static UMat diag(const UMat& d, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
 | 
						|
    CV_NODISCARD_STD static UMat diag(const UMat& d) { return diag(d, USAGE_DEFAULT); }  // OpenCV 5.0: remove abi compatibility overload
 | 
						|
 | 
						|
    //! returns deep copy of the matrix, i.e. the data is copied
 | 
						|
    CV_NODISCARD_STD UMat clone() const;
 | 
						|
    //! copies the matrix content to "m".
 | 
						|
    // It calls m.create(this->size(), this->type()).
 | 
						|
    void copyTo( OutputArray m ) const;
 | 
						|
    //! copies those matrix elements to "m" that are marked with non-zero mask elements.
 | 
						|
    void copyTo( OutputArray m, InputArray mask ) const;
 | 
						|
    //! converts matrix to another datatype with optional scaling. See cvConvertScale.
 | 
						|
    void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const;
 | 
						|
 | 
						|
    void assignTo( UMat& m, int type=-1 ) const;
 | 
						|
 | 
						|
    //! sets every matrix element to s
 | 
						|
    UMat& operator = (const Scalar& s);
 | 
						|
    //! sets some of the matrix elements to s, according to the mask
 | 
						|
    UMat& setTo(InputArray value, InputArray mask=noArray());
 | 
						|
    //! creates alternative matrix header for the same data, with different
 | 
						|
    // number of channels and/or different number of rows. see cvReshape.
 | 
						|
    UMat reshape(int cn, int rows=0) const;
 | 
						|
    UMat reshape(int cn, int newndims, const int* newsz) const;
 | 
						|
 | 
						|
    //! matrix transposition by means of matrix expressions
 | 
						|
    UMat t() const;
 | 
						|
    //! matrix inversion by means of matrix expressions
 | 
						|
    UMat inv(int method=DECOMP_LU) const;
 | 
						|
    //! per-element matrix multiplication by means of matrix expressions
 | 
						|
    UMat mul(InputArray m, double scale=1) const;
 | 
						|
 | 
						|
    //! computes dot-product
 | 
						|
    double dot(InputArray m) const;
 | 
						|
 | 
						|
    //! Matlab-style matrix initialization
 | 
						|
    CV_NODISCARD_STD static UMat zeros(int rows, int cols, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
 | 
						|
    CV_NODISCARD_STD static UMat zeros(Size size, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
 | 
						|
    CV_NODISCARD_STD static UMat zeros(int ndims, const int* sz, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
 | 
						|
    CV_NODISCARD_STD static UMat zeros(int rows, int cols, int type) { return zeros(rows, cols, type, USAGE_DEFAULT); }  // OpenCV 5.0: remove abi compatibility overload
 | 
						|
    CV_NODISCARD_STD static UMat zeros(Size size, int type) { return zeros(size, type, USAGE_DEFAULT); }  // OpenCV 5.0: remove abi compatibility overload
 | 
						|
    CV_NODISCARD_STD static UMat zeros(int ndims, const int* sz, int type) { return zeros(ndims, sz, type, USAGE_DEFAULT); }  // OpenCV 5.0: remove abi compatibility overload
 | 
						|
    CV_NODISCARD_STD static UMat ones(int rows, int cols, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
 | 
						|
    CV_NODISCARD_STD static UMat ones(Size size, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
 | 
						|
    CV_NODISCARD_STD static UMat ones(int ndims, const int* sz, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
 | 
						|
    CV_NODISCARD_STD static UMat ones(int rows, int cols, int type) { return ones(rows, cols, type, USAGE_DEFAULT); }  // OpenCV 5.0: remove abi compatibility overload
 | 
						|
    CV_NODISCARD_STD static UMat ones(Size size, int type) { return ones(size, type, USAGE_DEFAULT); }  // OpenCV 5.0: remove abi compatibility overload
 | 
						|
    CV_NODISCARD_STD static UMat ones(int ndims, const int* sz, int type) { return ones(ndims, sz, type, USAGE_DEFAULT); }  // OpenCV 5.0: remove abi compatibility overload
 | 
						|
    CV_NODISCARD_STD static UMat eye(int rows, int cols, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
 | 
						|
    CV_NODISCARD_STD static UMat eye(Size size, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
 | 
						|
    CV_NODISCARD_STD static UMat eye(int rows, int cols, int type) { return eye(rows, cols, type, USAGE_DEFAULT); }  // OpenCV 5.0: remove abi compatibility overload
 | 
						|
    CV_NODISCARD_STD static UMat eye(Size size, int type) { return eye(size, type, USAGE_DEFAULT); }  // OpenCV 5.0: remove abi compatibility overload
 | 
						|
 | 
						|
    //! allocates new matrix data unless the matrix already has specified size and type.
 | 
						|
    // previous data is unreferenced if needed.
 | 
						|
    void create(int rows, int cols, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
 | 
						|
    void create(Size size, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
 | 
						|
    void create(int ndims, const int* sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
 | 
						|
    void create(const std::vector<int>& sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
 | 
						|
 | 
						|
    //! increases the reference counter; use with care to avoid memleaks
 | 
						|
    void addref();
 | 
						|
    //! decreases reference counter;
 | 
						|
    // deallocates the data when reference counter reaches 0.
 | 
						|
    void release();
 | 
						|
 | 
						|
    //! deallocates the matrix data
 | 
						|
    void deallocate();
 | 
						|
    //! internal use function; properly re-allocates _size, _step arrays
 | 
						|
    void copySize(const UMat& m);
 | 
						|
 | 
						|
    //! locates matrix header within a parent matrix. See below
 | 
						|
    void locateROI( Size& wholeSize, Point& ofs ) const;
 | 
						|
    //! moves/resizes the current matrix ROI inside the parent matrix.
 | 
						|
    UMat& adjustROI( int dtop, int dbottom, int dleft, int dright );
 | 
						|
    //! extracts a rectangular sub-matrix
 | 
						|
    // (this is a generalized form of row, rowRange etc.)
 | 
						|
    UMat operator()( Range rowRange, Range colRange ) const;
 | 
						|
    UMat operator()( const Rect& roi ) const;
 | 
						|
    UMat operator()( const Range* ranges ) const;
 | 
						|
    UMat operator()(const std::vector<Range>& ranges) const;
 | 
						|
 | 
						|
    //! returns true iff the matrix data is continuous
 | 
						|
    // (i.e. when there are no gaps between successive rows).
 | 
						|
    // similar to CV_IS_MAT_CONT(cvmat->type)
 | 
						|
    bool isContinuous() const;
 | 
						|
 | 
						|
    //! returns true if the matrix is a submatrix of another matrix
 | 
						|
    bool isSubmatrix() const;
 | 
						|
 | 
						|
    //! returns element size in bytes,
 | 
						|
    // similar to CV_ELEM_SIZE(cvmat->type)
 | 
						|
    size_t elemSize() const;
 | 
						|
    //! returns the size of element channel in bytes.
 | 
						|
    size_t elemSize1() const;
 | 
						|
    //! returns element type, similar to CV_MAT_TYPE(cvmat->type)
 | 
						|
    int type() const;
 | 
						|
    //! returns element type, similar to CV_MAT_DEPTH(cvmat->type)
 | 
						|
    int depth() const;
 | 
						|
    //! returns element type, similar to CV_MAT_CN(cvmat->type)
 | 
						|
    int channels() const;
 | 
						|
    //! returns step/elemSize1()
 | 
						|
    size_t step1(int i=0) const;
 | 
						|
    //! returns true if matrix data is NULL
 | 
						|
    bool empty() const;
 | 
						|
    //! returns the total number of matrix elements
 | 
						|
    size_t total() const;
 | 
						|
 | 
						|
    //! returns N if the matrix is 1-channel (N x ptdim) or ptdim-channel (1 x N) or (N x 1); negative number otherwise
 | 
						|
    int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const;
 | 
						|
 | 
						|
    UMat(UMat&& m);
 | 
						|
    UMat& operator = (UMat&& m);
 | 
						|
 | 
						|
    /*! Returns the OpenCL buffer handle on which UMat operates on.
 | 
						|
        The UMat instance should be kept alive during the use of the handle to prevent the buffer to be
 | 
						|
        returned to the OpenCV buffer pool.
 | 
						|
     */
 | 
						|
    void* handle(AccessFlag accessFlags) const;
 | 
						|
    void ndoffset(size_t* ofs) const;
 | 
						|
 | 
						|
    enum { MAGIC_VAL  = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG };
 | 
						|
    enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 };
 | 
						|
 | 
						|
    /*! includes several bit-fields:
 | 
						|
         - the magic signature
 | 
						|
         - continuity flag
 | 
						|
         - depth
 | 
						|
         - number of channels
 | 
						|
     */
 | 
						|
    int flags;
 | 
						|
 | 
						|
    //! the matrix dimensionality, >= 2
 | 
						|
    int dims;
 | 
						|
 | 
						|
    //! number of rows in the matrix; -1 when the matrix has more than 2 dimensions
 | 
						|
    int rows;
 | 
						|
 | 
						|
    //! number of columns in the matrix; -1 when the matrix has more than 2 dimensions
 | 
						|
    int cols;
 | 
						|
 | 
						|
    //! custom allocator
 | 
						|
    MatAllocator* allocator;
 | 
						|
 | 
						|
    //! usage flags for allocator; recommend do not set directly, instead set during construct/create/getUMat
 | 
						|
    UMatUsageFlags usageFlags;
 | 
						|
 | 
						|
    //! and the standard allocator
 | 
						|
    static MatAllocator* getStdAllocator();
 | 
						|
 | 
						|
    //! internal use method: updates the continuity flag
 | 
						|
    void updateContinuityFlag();
 | 
						|
 | 
						|
    //! black-box container of UMat data
 | 
						|
    UMatData* u;
 | 
						|
 | 
						|
    //! offset of the submatrix (or 0)
 | 
						|
    size_t offset;
 | 
						|
 | 
						|
    //! dimensional size of the matrix; accessible in various formats
 | 
						|
    MatSize size;
 | 
						|
 | 
						|
    //! number of bytes each matrix element/row/plane/dimension occupies
 | 
						|
    MatStep step;
 | 
						|
 | 
						|
protected:
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/////////////////////////// multi-dimensional sparse matrix //////////////////////////
 | 
						|
 | 
						|
/** @brief The class SparseMat represents multi-dimensional sparse numerical arrays.
 | 
						|
 | 
						|
Such a sparse array can store elements of any type that Mat can store. *Sparse* means that only
 | 
						|
non-zero elements are stored (though, as a result of operations on a sparse matrix, some of its
 | 
						|
stored elements can actually become 0. It is up to you to detect such elements and delete them
 | 
						|
using SparseMat::erase ). The non-zero elements are stored in a hash table that grows when it is
 | 
						|
filled so that the search time is O(1) in average (regardless of whether element is there or not).
 | 
						|
Elements can be accessed using the following methods:
 | 
						|
-   Query operations (SparseMat::ptr and the higher-level SparseMat::ref, SparseMat::value and
 | 
						|
    SparseMat::find), for example:
 | 
						|
    @code
 | 
						|
        const int dims = 5;
 | 
						|
        int size[5] = {10, 10, 10, 10, 10};
 | 
						|
        SparseMat sparse_mat(dims, size, CV_32F);
 | 
						|
        for(int i = 0; i < 1000; i++)
 | 
						|
        {
 | 
						|
            int idx[dims];
 | 
						|
            for(int k = 0; k < dims; k++)
 | 
						|
                idx[k] = rand() % size[k];
 | 
						|
            sparse_mat.ref<float>(idx) += 1.f;
 | 
						|
        }
 | 
						|
        cout << "nnz = " << sparse_mat.nzcount() << endl;
 | 
						|
    @endcode
 | 
						|
-   Sparse matrix iterators. They are similar to MatIterator but different from NAryMatIterator.
 | 
						|
    That is, the iteration loop is familiar to STL users:
 | 
						|
    @code
 | 
						|
        // prints elements of a sparse floating-point matrix
 | 
						|
        // and the sum of elements.
 | 
						|
        SparseMatConstIterator_<float>
 | 
						|
            it = sparse_mat.begin<float>(),
 | 
						|
            it_end = sparse_mat.end<float>();
 | 
						|
        double s = 0;
 | 
						|
        int dims = sparse_mat.dims();
 | 
						|
        for(; it != it_end; ++it)
 | 
						|
        {
 | 
						|
            // print element indices and the element value
 | 
						|
            const SparseMat::Node* n = it.node();
 | 
						|
            printf("(");
 | 
						|
            for(int i = 0; i < dims; i++)
 | 
						|
                printf("%d%s", n->idx[i], i < dims-1 ? ", " : ")");
 | 
						|
            printf(": %g\n", it.value<float>());
 | 
						|
            s += *it;
 | 
						|
        }
 | 
						|
        printf("Element sum is %g\n", s);
 | 
						|
    @endcode
 | 
						|
    If you run this loop, you will notice that elements are not enumerated in a logical order
 | 
						|
    (lexicographical, and so on). They come in the same order as they are stored in the hash table
 | 
						|
    (semi-randomly). You may collect pointers to the nodes and sort them to get the proper ordering.
 | 
						|
    Note, however, that pointers to the nodes may become invalid when you add more elements to the
 | 
						|
    matrix. This may happen due to possible buffer reallocation.
 | 
						|
-   Combination of the above 2 methods when you need to process 2 or more sparse matrices
 | 
						|
    simultaneously. For example, this is how you can compute unnormalized cross-correlation of the 2
 | 
						|
    floating-point sparse matrices:
 | 
						|
    @code
 | 
						|
        double cross_corr(const SparseMat& a, const SparseMat& b)
 | 
						|
        {
 | 
						|
            const SparseMat *_a = &a, *_b = &b;
 | 
						|
            // if b contains less elements than a,
 | 
						|
            // it is faster to iterate through b
 | 
						|
            if(_a->nzcount() > _b->nzcount())
 | 
						|
                std::swap(_a, _b);
 | 
						|
            SparseMatConstIterator_<float> it = _a->begin<float>(),
 | 
						|
                                           it_end = _a->end<float>();
 | 
						|
            double ccorr = 0;
 | 
						|
            for(; it != it_end; ++it)
 | 
						|
            {
 | 
						|
                // take the next element from the first matrix
 | 
						|
                float avalue = *it;
 | 
						|
                const Node* anode = it.node();
 | 
						|
                // and try to find an element with the same index in the second matrix.
 | 
						|
                // since the hash value depends only on the element index,
 | 
						|
                // reuse the hash value stored in the node
 | 
						|
                float bvalue = _b->value<float>(anode->idx,&anode->hashval);
 | 
						|
                ccorr += avalue*bvalue;
 | 
						|
            }
 | 
						|
            return ccorr;
 | 
						|
        }
 | 
						|
    @endcode
 | 
						|
 */
 | 
						|
class CV_EXPORTS SparseMat
 | 
						|
{
 | 
						|
public:
 | 
						|
    typedef SparseMatIterator iterator;
 | 
						|
    typedef SparseMatConstIterator const_iterator;
 | 
						|
 | 
						|
    enum { MAGIC_VAL=0x42FD0000, MAX_DIM=32, HASH_SCALE=0x5bd1e995, HASH_BIT=0x80000000 };
 | 
						|
 | 
						|
    //! the sparse matrix header
 | 
						|
    struct CV_EXPORTS Hdr
 | 
						|
    {
 | 
						|
        Hdr(int _dims, const int* _sizes, int _type);
 | 
						|
        void clear();
 | 
						|
        int refcount;
 | 
						|
        int dims;
 | 
						|
        int valueOffset;
 | 
						|
        size_t nodeSize;
 | 
						|
        size_t nodeCount;
 | 
						|
        size_t freeList;
 | 
						|
        std::vector<uchar> pool;
 | 
						|
        std::vector<size_t> hashtab;
 | 
						|
        int size[MAX_DIM];
 | 
						|
    };
 | 
						|
 | 
						|
    //! sparse matrix node - element of a hash table
 | 
						|
    struct CV_EXPORTS Node
 | 
						|
    {
 | 
						|
        //! hash value
 | 
						|
        size_t hashval;
 | 
						|
        //! index of the next node in the same hash table entry
 | 
						|
        size_t next;
 | 
						|
        //! index of the matrix element
 | 
						|
        int idx[MAX_DIM];
 | 
						|
    };
 | 
						|
 | 
						|
    /** @brief Various SparseMat constructors.
 | 
						|
     */
 | 
						|
    SparseMat();
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param dims Array dimensionality.
 | 
						|
    @param _sizes Sparce matrix size on all dementions.
 | 
						|
    @param _type Sparse matrix data type.
 | 
						|
    */
 | 
						|
    SparseMat(int dims, const int* _sizes, int _type);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param m Source matrix for copy constructor. If m is dense matrix (ocvMat) then it will be converted
 | 
						|
    to sparse representation.
 | 
						|
    */
 | 
						|
    SparseMat(const SparseMat& m);
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param m Source matrix for copy constructor. If m is dense matrix (ocvMat) then it will be converted
 | 
						|
    to sparse representation.
 | 
						|
    */
 | 
						|
    explicit SparseMat(const Mat& m);
 | 
						|
 | 
						|
    //! the destructor
 | 
						|
    ~SparseMat();
 | 
						|
 | 
						|
    //! assignment operator. This is O(1) operation, i.e. no data is copied
 | 
						|
    SparseMat& operator = (const SparseMat& m);
 | 
						|
    //! equivalent to the corresponding constructor
 | 
						|
    SparseMat& operator = (const Mat& m);
 | 
						|
 | 
						|
    //! creates full copy of the matrix
 | 
						|
    CV_NODISCARD_STD SparseMat clone() const;
 | 
						|
 | 
						|
    //! copies all the data to the destination matrix. All the previous content of m is erased
 | 
						|
    void copyTo( SparseMat& m ) const;
 | 
						|
    //! converts sparse matrix to dense matrix.
 | 
						|
    void copyTo( Mat& m ) const;
 | 
						|
    //! multiplies all the matrix elements by the specified scale factor alpha and converts the results to the specified data type
 | 
						|
    void convertTo( SparseMat& m, int rtype, double alpha=1 ) const;
 | 
						|
    //! converts sparse matrix to dense n-dim matrix with optional type conversion and scaling.
 | 
						|
    /*!
 | 
						|
        @param [out] m - output matrix; if it does not have a proper size or type before the operation,
 | 
						|
            it is reallocated
 | 
						|
        @param [in] rtype - desired output matrix type or, rather, the depth since the number of channels
 | 
						|
            are the same as the input has; if rtype is negative, the output matrix will have the
 | 
						|
            same type as the input.
 | 
						|
        @param [in] alpha - optional scale factor
 | 
						|
        @param [in] beta - optional delta added to the scaled values
 | 
						|
    */
 | 
						|
    void convertTo( Mat& m, int rtype, double alpha=1, double beta=0 ) const;
 | 
						|
 | 
						|
    // not used now
 | 
						|
    void assignTo( SparseMat& m, int type=-1 ) const;
 | 
						|
 | 
						|
    //! reallocates sparse matrix.
 | 
						|
    /*!
 | 
						|
        If the matrix already had the proper size and type,
 | 
						|
        it is simply cleared with clear(), otherwise,
 | 
						|
        the old matrix is released (using release()) and the new one is allocated.
 | 
						|
    */
 | 
						|
    void create(int dims, const int* _sizes, int _type);
 | 
						|
    //! sets all the sparse matrix elements to 0, which means clearing the hash table.
 | 
						|
    void clear();
 | 
						|
    //! manually increments the reference counter to the header.
 | 
						|
    void addref();
 | 
						|
    // decrements the header reference counter. When the counter reaches 0, the header and all the underlying data are deallocated.
 | 
						|
    void release();
 | 
						|
 | 
						|
    //! converts sparse matrix to the old-style representation; all the elements are copied.
 | 
						|
    //operator CvSparseMat*() const;
 | 
						|
    //! returns the size of each element in bytes (not including the overhead - the space occupied by SparseMat::Node elements)
 | 
						|
    size_t elemSize() const;
 | 
						|
    //! returns elemSize()/channels()
 | 
						|
    size_t elemSize1() const;
 | 
						|
 | 
						|
    //! returns type of sparse matrix elements
 | 
						|
    int type() const;
 | 
						|
    //! returns the depth of sparse matrix elements
 | 
						|
    int depth() const;
 | 
						|
    //! returns the number of channels
 | 
						|
    int channels() const;
 | 
						|
 | 
						|
    //! returns the array of sizes, or NULL if the matrix is not allocated
 | 
						|
    const int* size() const;
 | 
						|
    //! returns the size of i-th matrix dimension (or 0)
 | 
						|
    int size(int i) const;
 | 
						|
    //! returns the matrix dimensionality
 | 
						|
    int dims() const;
 | 
						|
    //! returns the number of non-zero elements (=the number of hash table nodes)
 | 
						|
    size_t nzcount() const;
 | 
						|
 | 
						|
    //! computes the element hash value (1D case)
 | 
						|
    size_t hash(int i0) const;
 | 
						|
    //! computes the element hash value (2D case)
 | 
						|
    size_t hash(int i0, int i1) const;
 | 
						|
    //! computes the element hash value (3D case)
 | 
						|
    size_t hash(int i0, int i1, int i2) const;
 | 
						|
    //! computes the element hash value (nD case)
 | 
						|
    size_t hash(const int* idx) const;
 | 
						|
 | 
						|
    //!@{
 | 
						|
    /*!
 | 
						|
     specialized variants for 1D, 2D, 3D cases and the generic_type one for n-D case.
 | 
						|
     return pointer to the matrix element.
 | 
						|
      - if the element is there (it's non-zero), the pointer to it is returned
 | 
						|
      - if it's not there and createMissing=false, NULL pointer is returned
 | 
						|
      - if it's not there and createMissing=true, then the new element
 | 
						|
        is created and initialized with 0. Pointer to it is returned
 | 
						|
      - if the optional hashval pointer is not NULL, the element hash value is
 | 
						|
        not computed, but *hashval is taken instead.
 | 
						|
    */
 | 
						|
    //! returns pointer to the specified element (1D case)
 | 
						|
    uchar* ptr(int i0, bool createMissing, size_t* hashval=0);
 | 
						|
    //! returns pointer to the specified element (2D case)
 | 
						|
    uchar* ptr(int i0, int i1, bool createMissing, size_t* hashval=0);
 | 
						|
    //! returns pointer to the specified element (3D case)
 | 
						|
    uchar* ptr(int i0, int i1, int i2, bool createMissing, size_t* hashval=0);
 | 
						|
    //! returns pointer to the specified element (nD case)
 | 
						|
    uchar* ptr(const int* idx, bool createMissing, size_t* hashval=0);
 | 
						|
    //!@}
 | 
						|
 | 
						|
    //!@{
 | 
						|
    /*!
 | 
						|
     return read-write reference to the specified sparse matrix element.
 | 
						|
 | 
						|
     `ref<_Tp>(i0,...[,hashval])` is equivalent to `*(_Tp*)ptr(i0,...,true[,hashval])`.
 | 
						|
     The methods always return a valid reference.
 | 
						|
     If the element did not exist, it is created and initialized with 0.
 | 
						|
    */
 | 
						|
    //! returns reference to the specified element (1D case)
 | 
						|
    template<typename _Tp> _Tp& ref(int i0, size_t* hashval=0);
 | 
						|
    //! returns reference to the specified element (2D case)
 | 
						|
    template<typename _Tp> _Tp& ref(int i0, int i1, size_t* hashval=0);
 | 
						|
    //! returns reference to the specified element (3D case)
 | 
						|
    template<typename _Tp> _Tp& ref(int i0, int i1, int i2, size_t* hashval=0);
 | 
						|
    //! returns reference to the specified element (nD case)
 | 
						|
    template<typename _Tp> _Tp& ref(const int* idx, size_t* hashval=0);
 | 
						|
    //!@}
 | 
						|
 | 
						|
    //!@{
 | 
						|
    /*!
 | 
						|
     return value of the specified sparse matrix element.
 | 
						|
 | 
						|
     `value<_Tp>(i0,...[,hashval])` is equivalent to
 | 
						|
     @code
 | 
						|
     { const _Tp* p = find<_Tp>(i0,...[,hashval]); return p ? *p : _Tp(); }
 | 
						|
     @endcode
 | 
						|
 | 
						|
     That is, if the element did not exist, the methods return 0.
 | 
						|
     */
 | 
						|
    //! returns value of the specified element (1D case)
 | 
						|
    template<typename _Tp> _Tp value(int i0, size_t* hashval=0) const;
 | 
						|
    //! returns value of the specified element (2D case)
 | 
						|
    template<typename _Tp> _Tp value(int i0, int i1, size_t* hashval=0) const;
 | 
						|
    //! returns value of the specified element (3D case)
 | 
						|
    template<typename _Tp> _Tp value(int i0, int i1, int i2, size_t* hashval=0) const;
 | 
						|
    //! returns value of the specified element (nD case)
 | 
						|
    template<typename _Tp> _Tp value(const int* idx, size_t* hashval=0) const;
 | 
						|
    //!@}
 | 
						|
 | 
						|
    //!@{
 | 
						|
    /*!
 | 
						|
     Return pointer to the specified sparse matrix element if it exists
 | 
						|
 | 
						|
     `find<_Tp>(i0,...[,hashval])` is equivalent to `(_const Tp*)ptr(i0,...false[,hashval])`.
 | 
						|
 | 
						|
     If the specified element does not exist, the methods return NULL.
 | 
						|
    */
 | 
						|
    //! returns pointer to the specified element (1D case)
 | 
						|
    template<typename _Tp> const _Tp* find(int i0, size_t* hashval=0) const;
 | 
						|
    //! returns pointer to the specified element (2D case)
 | 
						|
    template<typename _Tp> const _Tp* find(int i0, int i1, size_t* hashval=0) const;
 | 
						|
    //! returns pointer to the specified element (3D case)
 | 
						|
    template<typename _Tp> const _Tp* find(int i0, int i1, int i2, size_t* hashval=0) const;
 | 
						|
    //! returns pointer to the specified element (nD case)
 | 
						|
    template<typename _Tp> const _Tp* find(const int* idx, size_t* hashval=0) const;
 | 
						|
    //!@}
 | 
						|
 | 
						|
    //! erases the specified element (2D case)
 | 
						|
    void erase(int i0, int i1, size_t* hashval=0);
 | 
						|
    //! erases the specified element (3D case)
 | 
						|
    void erase(int i0, int i1, int i2, size_t* hashval=0);
 | 
						|
    //! erases the specified element (nD case)
 | 
						|
    void erase(const int* idx, size_t* hashval=0);
 | 
						|
 | 
						|
    //!@{
 | 
						|
    /*!
 | 
						|
       return the sparse matrix iterator pointing to the first sparse matrix element
 | 
						|
    */
 | 
						|
    //! returns the sparse matrix iterator at the matrix beginning
 | 
						|
    SparseMatIterator begin();
 | 
						|
    //! returns the sparse matrix iterator at the matrix beginning
 | 
						|
    template<typename _Tp> SparseMatIterator_<_Tp> begin();
 | 
						|
    //! returns the read-only sparse matrix iterator at the matrix beginning
 | 
						|
    SparseMatConstIterator begin() const;
 | 
						|
    //! returns the read-only sparse matrix iterator at the matrix beginning
 | 
						|
    template<typename _Tp> SparseMatConstIterator_<_Tp> begin() const;
 | 
						|
    //!@}
 | 
						|
    /*!
 | 
						|
       return the sparse matrix iterator pointing to the element following the last sparse matrix element
 | 
						|
    */
 | 
						|
    //! returns the sparse matrix iterator at the matrix end
 | 
						|
    SparseMatIterator end();
 | 
						|
    //! returns the read-only sparse matrix iterator at the matrix end
 | 
						|
    SparseMatConstIterator end() const;
 | 
						|
    //! returns the typed sparse matrix iterator at the matrix end
 | 
						|
    template<typename _Tp> SparseMatIterator_<_Tp> end();
 | 
						|
    //! returns the typed read-only sparse matrix iterator at the matrix end
 | 
						|
    template<typename _Tp> SparseMatConstIterator_<_Tp> end() const;
 | 
						|
 | 
						|
    //! returns the value stored in the sparse martix node
 | 
						|
    template<typename _Tp> _Tp& value(Node* n);
 | 
						|
    //! returns the value stored in the sparse martix node
 | 
						|
    template<typename _Tp> const _Tp& value(const Node* n) const;
 | 
						|
 | 
						|
    ////////////// some internal-use methods ///////////////
 | 
						|
    Node* node(size_t nidx);
 | 
						|
    const Node* node(size_t nidx) const;
 | 
						|
 | 
						|
    uchar* newNode(const int* idx, size_t hashval);
 | 
						|
    void removeNode(size_t hidx, size_t nidx, size_t previdx);
 | 
						|
    void resizeHashTab(size_t newsize);
 | 
						|
 | 
						|
    int flags;
 | 
						|
    Hdr* hdr;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
///////////////////////////////// SparseMat_<_Tp> ////////////////////////////////////
 | 
						|
 | 
						|
/** @brief Template sparse n-dimensional array class derived from SparseMat
 | 
						|
 | 
						|
SparseMat_ is a thin wrapper on top of SparseMat created in the same way as Mat_ . It simplifies
 | 
						|
notation of some operations:
 | 
						|
@code
 | 
						|
    int sz[] = {10, 20, 30};
 | 
						|
    SparseMat_<double> M(3, sz);
 | 
						|
    ...
 | 
						|
    M.ref(1, 2, 3) = M(4, 5, 6) + M(7, 8, 9);
 | 
						|
@endcode
 | 
						|
 */
 | 
						|
template<typename _Tp> class SparseMat_ : public SparseMat
 | 
						|
{
 | 
						|
public:
 | 
						|
    typedef SparseMatIterator_<_Tp> iterator;
 | 
						|
    typedef SparseMatConstIterator_<_Tp> const_iterator;
 | 
						|
 | 
						|
    //! the default constructor
 | 
						|
    SparseMat_();
 | 
						|
    //! the full constructor equivalent to SparseMat(dims, _sizes, DataType<_Tp>::type)
 | 
						|
    SparseMat_(int dims, const int* _sizes);
 | 
						|
    //! the copy constructor. If DataType<_Tp>.type != m.type(), the m elements are converted
 | 
						|
    SparseMat_(const SparseMat& m);
 | 
						|
    //! the copy constructor. This is O(1) operation - no data is copied
 | 
						|
    SparseMat_(const SparseMat_& m);
 | 
						|
    //! converts dense matrix to the sparse form
 | 
						|
    SparseMat_(const Mat& m);
 | 
						|
    //! converts the old-style sparse matrix to the C++ class. All the elements are copied
 | 
						|
    //SparseMat_(const CvSparseMat* m);
 | 
						|
    //! the assignment operator. If DataType<_Tp>.type != m.type(), the m elements are converted
 | 
						|
    SparseMat_& operator = (const SparseMat& m);
 | 
						|
    //! the assignment operator. This is O(1) operation - no data is copied
 | 
						|
    SparseMat_& operator = (const SparseMat_& m);
 | 
						|
    //! converts dense matrix to the sparse form
 | 
						|
    SparseMat_& operator = (const Mat& m);
 | 
						|
 | 
						|
    //! makes full copy of the matrix. All the elements are duplicated
 | 
						|
    CV_NODISCARD_STD SparseMat_ clone() const;
 | 
						|
    //! equivalent to cv::SparseMat::create(dims, _sizes, DataType<_Tp>::type)
 | 
						|
    void create(int dims, const int* _sizes);
 | 
						|
    //! converts sparse matrix to the old-style CvSparseMat. All the elements are copied
 | 
						|
    //operator CvSparseMat*() const;
 | 
						|
 | 
						|
    //! returns type of the matrix elements
 | 
						|
    int type() const;
 | 
						|
    //! returns depth of the matrix elements
 | 
						|
    int depth() const;
 | 
						|
    //! returns the number of channels in each matrix element
 | 
						|
    int channels() const;
 | 
						|
 | 
						|
    //! equivalent to SparseMat::ref<_Tp>(i0, hashval)
 | 
						|
    _Tp& ref(int i0, size_t* hashval=0);
 | 
						|
    //! equivalent to SparseMat::ref<_Tp>(i0, i1, hashval)
 | 
						|
    _Tp& ref(int i0, int i1, size_t* hashval=0);
 | 
						|
    //! equivalent to SparseMat::ref<_Tp>(i0, i1, i2, hashval)
 | 
						|
    _Tp& ref(int i0, int i1, int i2, size_t* hashval=0);
 | 
						|
    //! equivalent to SparseMat::ref<_Tp>(idx, hashval)
 | 
						|
    _Tp& ref(const int* idx, size_t* hashval=0);
 | 
						|
 | 
						|
    //! equivalent to SparseMat::value<_Tp>(i0, hashval)
 | 
						|
    _Tp operator()(int i0, size_t* hashval=0) const;
 | 
						|
    //! equivalent to SparseMat::value<_Tp>(i0, i1, hashval)
 | 
						|
    _Tp operator()(int i0, int i1, size_t* hashval=0) const;
 | 
						|
    //! equivalent to SparseMat::value<_Tp>(i0, i1, i2, hashval)
 | 
						|
    _Tp operator()(int i0, int i1, int i2, size_t* hashval=0) const;
 | 
						|
    //! equivalent to SparseMat::value<_Tp>(idx, hashval)
 | 
						|
    _Tp operator()(const int* idx, size_t* hashval=0) const;
 | 
						|
 | 
						|
    //! returns sparse matrix iterator pointing to the first sparse matrix element
 | 
						|
    SparseMatIterator_<_Tp> begin();
 | 
						|
    //! returns read-only sparse matrix iterator pointing to the first sparse matrix element
 | 
						|
    SparseMatConstIterator_<_Tp> begin() const;
 | 
						|
    //! returns sparse matrix iterator pointing to the element following the last sparse matrix element
 | 
						|
    SparseMatIterator_<_Tp> end();
 | 
						|
    //! returns read-only sparse matrix iterator pointing to the element following the last sparse matrix element
 | 
						|
    SparseMatConstIterator_<_Tp> end() const;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
////////////////////////////////// MatConstIterator //////////////////////////////////
 | 
						|
 | 
						|
class CV_EXPORTS MatConstIterator
 | 
						|
{
 | 
						|
public:
 | 
						|
    typedef uchar* value_type;
 | 
						|
    typedef ptrdiff_t difference_type;
 | 
						|
    typedef const uchar** pointer;
 | 
						|
    typedef uchar* reference;
 | 
						|
 | 
						|
    typedef std::random_access_iterator_tag iterator_category;
 | 
						|
 | 
						|
    //! default constructor
 | 
						|
    MatConstIterator();
 | 
						|
    //! constructor that sets the iterator to the beginning of the matrix
 | 
						|
    MatConstIterator(const Mat* _m);
 | 
						|
    //! constructor that sets the iterator to the specified element of the matrix
 | 
						|
    MatConstIterator(const Mat* _m, int _row, int _col=0);
 | 
						|
    //! constructor that sets the iterator to the specified element of the matrix
 | 
						|
    MatConstIterator(const Mat* _m, Point _pt);
 | 
						|
    //! constructor that sets the iterator to the specified element of the matrix
 | 
						|
    MatConstIterator(const Mat* _m, const int* _idx);
 | 
						|
    //! copy constructor
 | 
						|
    MatConstIterator(const MatConstIterator& it);
 | 
						|
 | 
						|
    //! copy operator
 | 
						|
    MatConstIterator& operator = (const MatConstIterator& it);
 | 
						|
    //! returns the current matrix element
 | 
						|
    const uchar* operator *() const;
 | 
						|
    //! returns the i-th matrix element, relative to the current
 | 
						|
    const uchar* operator [](ptrdiff_t i) const;
 | 
						|
 | 
						|
    //! shifts the iterator forward by the specified number of elements
 | 
						|
    MatConstIterator& operator += (ptrdiff_t ofs);
 | 
						|
    //! shifts the iterator backward by the specified number of elements
 | 
						|
    MatConstIterator& operator -= (ptrdiff_t ofs);
 | 
						|
    //! decrements the iterator
 | 
						|
    MatConstIterator& operator --();
 | 
						|
    //! decrements the iterator
 | 
						|
    MatConstIterator operator --(int);
 | 
						|
    //! increments the iterator
 | 
						|
    MatConstIterator& operator ++();
 | 
						|
    //! increments the iterator
 | 
						|
    MatConstIterator operator ++(int);
 | 
						|
    //! returns the current iterator position
 | 
						|
    Point pos() const;
 | 
						|
    //! returns the current iterator position
 | 
						|
    void pos(int* _idx) const;
 | 
						|
 | 
						|
    ptrdiff_t lpos() const;
 | 
						|
    void seek(ptrdiff_t ofs, bool relative = false);
 | 
						|
    void seek(const int* _idx, bool relative = false);
 | 
						|
 | 
						|
    const Mat* m;
 | 
						|
    size_t elemSize;
 | 
						|
    const uchar* ptr;
 | 
						|
    const uchar* sliceStart;
 | 
						|
    const uchar* sliceEnd;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
////////////////////////////////// MatConstIterator_ /////////////////////////////////
 | 
						|
 | 
						|
/** @brief Matrix read-only iterator
 | 
						|
 */
 | 
						|
template<typename _Tp>
 | 
						|
class MatConstIterator_ : public MatConstIterator
 | 
						|
{
 | 
						|
public:
 | 
						|
    typedef _Tp value_type;
 | 
						|
    typedef ptrdiff_t difference_type;
 | 
						|
    typedef const _Tp* pointer;
 | 
						|
    typedef const _Tp& reference;
 | 
						|
 | 
						|
    typedef std::random_access_iterator_tag iterator_category;
 | 
						|
 | 
						|
    //! default constructor
 | 
						|
    MatConstIterator_();
 | 
						|
    //! constructor that sets the iterator to the beginning of the matrix
 | 
						|
    MatConstIterator_(const Mat_<_Tp>* _m);
 | 
						|
    //! constructor that sets the iterator to the specified element of the matrix
 | 
						|
    MatConstIterator_(const Mat_<_Tp>* _m, int _row, int _col=0);
 | 
						|
    //! constructor that sets the iterator to the specified element of the matrix
 | 
						|
    MatConstIterator_(const Mat_<_Tp>* _m, Point _pt);
 | 
						|
    //! constructor that sets the iterator to the specified element of the matrix
 | 
						|
    MatConstIterator_(const Mat_<_Tp>* _m, const int* _idx);
 | 
						|
    //! copy constructor
 | 
						|
    MatConstIterator_(const MatConstIterator_& it);
 | 
						|
 | 
						|
    //! copy operator
 | 
						|
    MatConstIterator_& operator = (const MatConstIterator_& it);
 | 
						|
    //! returns the current matrix element
 | 
						|
    const _Tp& operator *() const;
 | 
						|
    //! returns the i-th matrix element, relative to the current
 | 
						|
    const _Tp& operator [](ptrdiff_t i) const;
 | 
						|
 | 
						|
    //! shifts the iterator forward by the specified number of elements
 | 
						|
    MatConstIterator_& operator += (ptrdiff_t ofs);
 | 
						|
    //! shifts the iterator backward by the specified number of elements
 | 
						|
    MatConstIterator_& operator -= (ptrdiff_t ofs);
 | 
						|
    //! decrements the iterator
 | 
						|
    MatConstIterator_& operator --();
 | 
						|
    //! decrements the iterator
 | 
						|
    MatConstIterator_ operator --(int);
 | 
						|
    //! increments the iterator
 | 
						|
    MatConstIterator_& operator ++();
 | 
						|
    //! increments the iterator
 | 
						|
    MatConstIterator_ operator ++(int);
 | 
						|
    //! returns the current iterator position
 | 
						|
    Point pos() const;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//////////////////////////////////// MatIterator_ ////////////////////////////////////
 | 
						|
 | 
						|
/** @brief Matrix read-write iterator
 | 
						|
*/
 | 
						|
template<typename _Tp>
 | 
						|
class MatIterator_ : public MatConstIterator_<_Tp>
 | 
						|
{
 | 
						|
public:
 | 
						|
    typedef _Tp* pointer;
 | 
						|
    typedef _Tp& reference;
 | 
						|
 | 
						|
    typedef std::random_access_iterator_tag iterator_category;
 | 
						|
 | 
						|
    //! the default constructor
 | 
						|
    MatIterator_();
 | 
						|
    //! constructor that sets the iterator to the beginning of the matrix
 | 
						|
    MatIterator_(Mat_<_Tp>* _m);
 | 
						|
    //! constructor that sets the iterator to the specified element of the matrix
 | 
						|
    MatIterator_(Mat_<_Tp>* _m, int _row, int _col=0);
 | 
						|
    //! constructor that sets the iterator to the specified element of the matrix
 | 
						|
    MatIterator_(Mat_<_Tp>* _m, Point _pt);
 | 
						|
    //! constructor that sets the iterator to the specified element of the matrix
 | 
						|
    MatIterator_(Mat_<_Tp>* _m, const int* _idx);
 | 
						|
    //! copy constructor
 | 
						|
    MatIterator_(const MatIterator_& it);
 | 
						|
    //! copy operator
 | 
						|
    MatIterator_& operator = (const MatIterator_<_Tp>& it );
 | 
						|
 | 
						|
    //! returns the current matrix element
 | 
						|
    _Tp& operator *() const;
 | 
						|
    //! returns the i-th matrix element, relative to the current
 | 
						|
    _Tp& operator [](ptrdiff_t i) const;
 | 
						|
 | 
						|
    //! shifts the iterator forward by the specified number of elements
 | 
						|
    MatIterator_& operator += (ptrdiff_t ofs);
 | 
						|
    //! shifts the iterator backward by the specified number of elements
 | 
						|
    MatIterator_& operator -= (ptrdiff_t ofs);
 | 
						|
    //! decrements the iterator
 | 
						|
    MatIterator_& operator --();
 | 
						|
    //! decrements the iterator
 | 
						|
    MatIterator_ operator --(int);
 | 
						|
    //! increments the iterator
 | 
						|
    MatIterator_& operator ++();
 | 
						|
    //! increments the iterator
 | 
						|
    MatIterator_ operator ++(int);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/////////////////////////////// SparseMatConstIterator ///////////////////////////////
 | 
						|
 | 
						|
/**  @brief Read-Only Sparse Matrix Iterator.
 | 
						|
 | 
						|
 Here is how to use the iterator to compute the sum of floating-point sparse matrix elements:
 | 
						|
 | 
						|
 \code
 | 
						|
 SparseMatConstIterator it = m.begin(), it_end = m.end();
 | 
						|
 double s = 0;
 | 
						|
 CV_Assert( m.type() == CV_32F );
 | 
						|
 for( ; it != it_end; ++it )
 | 
						|
    s += it.value<float>();
 | 
						|
 \endcode
 | 
						|
*/
 | 
						|
class CV_EXPORTS SparseMatConstIterator
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! the default constructor
 | 
						|
    SparseMatConstIterator();
 | 
						|
    //! the full constructor setting the iterator to the first sparse matrix element
 | 
						|
    SparseMatConstIterator(const SparseMat* _m);
 | 
						|
    //! the copy constructor
 | 
						|
    SparseMatConstIterator(const SparseMatConstIterator& it);
 | 
						|
 | 
						|
    //! the assignment operator
 | 
						|
    SparseMatConstIterator& operator = (const SparseMatConstIterator& it);
 | 
						|
 | 
						|
    //! template method returning the current matrix element
 | 
						|
    template<typename _Tp> const _Tp& value() const;
 | 
						|
    //! returns the current node of the sparse matrix. it.node->idx is the current element index
 | 
						|
    const SparseMat::Node* node() const;
 | 
						|
 | 
						|
    //! moves iterator to the previous element
 | 
						|
    SparseMatConstIterator& operator --();
 | 
						|
    //! moves iterator to the previous element
 | 
						|
    SparseMatConstIterator operator --(int);
 | 
						|
    //! moves iterator to the next element
 | 
						|
    SparseMatConstIterator& operator ++();
 | 
						|
    //! moves iterator to the next element
 | 
						|
    SparseMatConstIterator operator ++(int);
 | 
						|
 | 
						|
    //! moves iterator to the element after the last element
 | 
						|
    void seekEnd();
 | 
						|
 | 
						|
    const SparseMat* m;
 | 
						|
    size_t hashidx;
 | 
						|
    uchar* ptr;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
////////////////////////////////// SparseMatIterator /////////////////////////////////
 | 
						|
 | 
						|
/** @brief  Read-write Sparse Matrix Iterator
 | 
						|
 | 
						|
 The class is similar to cv::SparseMatConstIterator,
 | 
						|
 but can be used for in-place modification of the matrix elements.
 | 
						|
*/
 | 
						|
class CV_EXPORTS SparseMatIterator : public SparseMatConstIterator
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! the default constructor
 | 
						|
    SparseMatIterator();
 | 
						|
    //! the full constructor setting the iterator to the first sparse matrix element
 | 
						|
    SparseMatIterator(SparseMat* _m);
 | 
						|
    //! the full constructor setting the iterator to the specified sparse matrix element
 | 
						|
    SparseMatIterator(SparseMat* _m, const int* idx);
 | 
						|
    //! the copy constructor
 | 
						|
    SparseMatIterator(const SparseMatIterator& it);
 | 
						|
 | 
						|
    //! the assignment operator
 | 
						|
    SparseMatIterator& operator = (const SparseMatIterator& it);
 | 
						|
    //! returns read-write reference to the current sparse matrix element
 | 
						|
    template<typename _Tp> _Tp& value() const;
 | 
						|
    //! returns pointer to the current sparse matrix node. it.node->idx is the index of the current element (do not modify it!)
 | 
						|
    SparseMat::Node* node() const;
 | 
						|
 | 
						|
    //! moves iterator to the next element
 | 
						|
    SparseMatIterator& operator ++();
 | 
						|
    //! moves iterator to the next element
 | 
						|
    SparseMatIterator operator ++(int);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/////////////////////////////// SparseMatConstIterator_ //////////////////////////////
 | 
						|
 | 
						|
/** @brief  Template Read-Only Sparse Matrix Iterator Class.
 | 
						|
 | 
						|
 This is the derived from SparseMatConstIterator class that
 | 
						|
 introduces more convenient operator *() for accessing the current element.
 | 
						|
*/
 | 
						|
template<typename _Tp> class SparseMatConstIterator_ : public SparseMatConstIterator
 | 
						|
{
 | 
						|
public:
 | 
						|
 | 
						|
    typedef std::forward_iterator_tag iterator_category;
 | 
						|
 | 
						|
    //! the default constructor
 | 
						|
    SparseMatConstIterator_();
 | 
						|
    //! the full constructor setting the iterator to the first sparse matrix element
 | 
						|
    SparseMatConstIterator_(const SparseMat_<_Tp>* _m);
 | 
						|
    SparseMatConstIterator_(const SparseMat* _m);
 | 
						|
    //! the copy constructor
 | 
						|
    SparseMatConstIterator_(const SparseMatConstIterator_& it);
 | 
						|
 | 
						|
    //! the assignment operator
 | 
						|
    SparseMatConstIterator_& operator = (const SparseMatConstIterator_& it);
 | 
						|
    //! the element access operator
 | 
						|
    const _Tp& operator *() const;
 | 
						|
 | 
						|
    //! moves iterator to the next element
 | 
						|
    SparseMatConstIterator_& operator ++();
 | 
						|
    //! moves iterator to the next element
 | 
						|
    SparseMatConstIterator_ operator ++(int);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
///////////////////////////////// SparseMatIterator_ /////////////////////////////////
 | 
						|
 | 
						|
/** @brief  Template Read-Write Sparse Matrix Iterator Class.
 | 
						|
 | 
						|
 This is the derived from cv::SparseMatConstIterator_ class that
 | 
						|
 introduces more convenient operator *() for accessing the current element.
 | 
						|
*/
 | 
						|
template<typename _Tp> class SparseMatIterator_ : public SparseMatConstIterator_<_Tp>
 | 
						|
{
 | 
						|
public:
 | 
						|
 | 
						|
    typedef std::forward_iterator_tag iterator_category;
 | 
						|
 | 
						|
    //! the default constructor
 | 
						|
    SparseMatIterator_();
 | 
						|
    //! the full constructor setting the iterator to the first sparse matrix element
 | 
						|
    SparseMatIterator_(SparseMat_<_Tp>* _m);
 | 
						|
    SparseMatIterator_(SparseMat* _m);
 | 
						|
    //! the copy constructor
 | 
						|
    SparseMatIterator_(const SparseMatIterator_& it);
 | 
						|
 | 
						|
    //! the assignment operator
 | 
						|
    SparseMatIterator_& operator = (const SparseMatIterator_& it);
 | 
						|
    //! returns the reference to the current element
 | 
						|
    _Tp& operator *() const;
 | 
						|
 | 
						|
    //! moves the iterator to the next element
 | 
						|
    SparseMatIterator_& operator ++();
 | 
						|
    //! moves the iterator to the next element
 | 
						|
    SparseMatIterator_ operator ++(int);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/////////////////////////////////// NAryMatIterator //////////////////////////////////
 | 
						|
 | 
						|
/** @brief n-ary multi-dimensional array iterator.
 | 
						|
 | 
						|
Use the class to implement unary, binary, and, generally, n-ary element-wise operations on
 | 
						|
multi-dimensional arrays. Some of the arguments of an n-ary function may be continuous arrays, some
 | 
						|
may be not. It is possible to use conventional MatIterator 's for each array but incrementing all of
 | 
						|
the iterators after each small operations may be a big overhead. In this case consider using
 | 
						|
NAryMatIterator to iterate through several matrices simultaneously as long as they have the same
 | 
						|
geometry (dimensionality and all the dimension sizes are the same). On each iteration `it.planes[0]`,
 | 
						|
`it.planes[1]`,... will be the slices of the corresponding matrices.
 | 
						|
 | 
						|
The example below illustrates how you can compute a normalized and threshold 3D color histogram:
 | 
						|
@code
 | 
						|
    void computeNormalizedColorHist(const Mat& image, Mat& hist, int N, double minProb)
 | 
						|
    {
 | 
						|
        const int histSize[] = {N, N, N};
 | 
						|
 | 
						|
        // make sure that the histogram has a proper size and type
 | 
						|
        hist.create(3, histSize, CV_32F);
 | 
						|
 | 
						|
        // and clear it
 | 
						|
        hist = Scalar(0);
 | 
						|
 | 
						|
        // the loop below assumes that the image
 | 
						|
        // is a 8-bit 3-channel. check it.
 | 
						|
        CV_Assert(image.type() == CV_8UC3);
 | 
						|
        MatConstIterator_<Vec3b> it = image.begin<Vec3b>(),
 | 
						|
                                 it_end = image.end<Vec3b>();
 | 
						|
        for( ; it != it_end; ++it )
 | 
						|
        {
 | 
						|
            const Vec3b& pix = *it;
 | 
						|
            hist.at<float>(pix[0]*N/256, pix[1]*N/256, pix[2]*N/256) += 1.f;
 | 
						|
        }
 | 
						|
 | 
						|
        minProb *= image.rows*image.cols;
 | 
						|
 | 
						|
        // initialize iterator (the style is different from STL).
 | 
						|
        // after initialization the iterator will contain
 | 
						|
        // the number of slices or planes the iterator will go through.
 | 
						|
        // it simultaneously increments iterators for several matrices
 | 
						|
        // supplied as a null terminated list of pointers
 | 
						|
        const Mat* arrays[] = {&hist, 0};
 | 
						|
        Mat planes[1];
 | 
						|
        NAryMatIterator itNAry(arrays, planes, 1);
 | 
						|
        double s = 0;
 | 
						|
        // iterate through the matrix. on each iteration
 | 
						|
        // itNAry.planes[i] (of type Mat) will be set to the current plane
 | 
						|
        // of the i-th n-dim matrix passed to the iterator constructor.
 | 
						|
        for(int p = 0; p < itNAry.nplanes; p++, ++itNAry)
 | 
						|
        {
 | 
						|
            threshold(itNAry.planes[0], itNAry.planes[0], minProb, 0, THRESH_TOZERO);
 | 
						|
            s += sum(itNAry.planes[0])[0];
 | 
						|
        }
 | 
						|
 | 
						|
        s = 1./s;
 | 
						|
        itNAry = NAryMatIterator(arrays, planes, 1);
 | 
						|
        for(int p = 0; p < itNAry.nplanes; p++, ++itNAry)
 | 
						|
            itNAry.planes[0] *= s;
 | 
						|
    }
 | 
						|
@endcode
 | 
						|
 */
 | 
						|
class CV_EXPORTS NAryMatIterator
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! the default constructor
 | 
						|
    NAryMatIterator();
 | 
						|
    //! the full constructor taking arbitrary number of n-dim matrices
 | 
						|
    NAryMatIterator(const Mat** arrays, uchar** ptrs, int narrays=-1);
 | 
						|
    //! the full constructor taking arbitrary number of n-dim matrices
 | 
						|
    NAryMatIterator(const Mat** arrays, Mat* planes, int narrays=-1);
 | 
						|
    //! the separate iterator initialization method
 | 
						|
    void init(const Mat** arrays, Mat* planes, uchar** ptrs, int narrays=-1);
 | 
						|
 | 
						|
    //! proceeds to the next plane of every iterated matrix
 | 
						|
    NAryMatIterator& operator ++();
 | 
						|
    //! proceeds to the next plane of every iterated matrix (postfix increment operator)
 | 
						|
    NAryMatIterator operator ++(int);
 | 
						|
 | 
						|
    //! the iterated arrays
 | 
						|
    const Mat** arrays;
 | 
						|
    //! the current planes
 | 
						|
    Mat* planes;
 | 
						|
    //! data pointers
 | 
						|
    uchar** ptrs;
 | 
						|
    //! the number of arrays
 | 
						|
    int narrays;
 | 
						|
    //! the number of hyper-planes that the iterator steps through
 | 
						|
    size_t nplanes;
 | 
						|
    //! the size of each segment (in elements)
 | 
						|
    size_t size;
 | 
						|
protected:
 | 
						|
    int iterdepth;
 | 
						|
    size_t idx;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
///////////////////////////////// Matrix Expressions /////////////////////////////////
 | 
						|
 | 
						|
class CV_EXPORTS MatOp
 | 
						|
{
 | 
						|
public:
 | 
						|
    MatOp();
 | 
						|
    virtual ~MatOp();
 | 
						|
 | 
						|
    virtual bool elementWise(const MatExpr& expr) const;
 | 
						|
    virtual void assign(const MatExpr& expr, Mat& m, int type=-1) const = 0;
 | 
						|
    virtual void roi(const MatExpr& expr, const Range& rowRange,
 | 
						|
                     const Range& colRange, MatExpr& res) const;
 | 
						|
    virtual void diag(const MatExpr& expr, int d, MatExpr& res) const;
 | 
						|
    virtual void augAssignAdd(const MatExpr& expr, Mat& m) const;
 | 
						|
    virtual void augAssignSubtract(const MatExpr& expr, Mat& m) const;
 | 
						|
    virtual void augAssignMultiply(const MatExpr& expr, Mat& m) const;
 | 
						|
    virtual void augAssignDivide(const MatExpr& expr, Mat& m) const;
 | 
						|
    virtual void augAssignAnd(const MatExpr& expr, Mat& m) const;
 | 
						|
    virtual void augAssignOr(const MatExpr& expr, Mat& m) const;
 | 
						|
    virtual void augAssignXor(const MatExpr& expr, Mat& m) const;
 | 
						|
 | 
						|
    virtual void add(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
 | 
						|
    virtual void add(const MatExpr& expr1, const Scalar& s, MatExpr& res) const;
 | 
						|
 | 
						|
    virtual void subtract(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
 | 
						|
    virtual void subtract(const Scalar& s, const MatExpr& expr, MatExpr& res) const;
 | 
						|
 | 
						|
    virtual void multiply(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const;
 | 
						|
    virtual void multiply(const MatExpr& expr1, double s, MatExpr& res) const;
 | 
						|
 | 
						|
    virtual void divide(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const;
 | 
						|
    virtual void divide(double s, const MatExpr& expr, MatExpr& res) const;
 | 
						|
 | 
						|
    virtual void abs(const MatExpr& expr, MatExpr& res) const;
 | 
						|
 | 
						|
    virtual void transpose(const MatExpr& expr, MatExpr& res) const;
 | 
						|
    virtual void matmul(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
 | 
						|
    virtual void invert(const MatExpr& expr, int method, MatExpr& res) const;
 | 
						|
 | 
						|
    virtual Size size(const MatExpr& expr) const;
 | 
						|
    virtual int type(const MatExpr& expr) const;
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Matrix expression representation
 | 
						|
@anchor MatrixExpressions
 | 
						|
This is a list of implemented matrix operations that can be combined in arbitrary complex
 | 
						|
expressions (here A, B stand for matrices ( Mat ), s for a scalar ( Scalar ), alpha for a
 | 
						|
real-valued scalar ( double )):
 | 
						|
-   Addition, subtraction, negation: `A+B`, `A-B`, `A+s`, `A-s`, `s+A`, `s-A`, `-A`
 | 
						|
-   Scaling: `A*alpha`
 | 
						|
-   Per-element multiplication and division: `A.mul(B)`, `A/B`, `alpha/A`
 | 
						|
-   Matrix multiplication: `A*B`
 | 
						|
-   Transposition: `A.t()` (means A<sup>T</sup>)
 | 
						|
-   Matrix inversion and pseudo-inversion, solving linear systems and least-squares problems:
 | 
						|
    `A.inv([method]) (~ A<sup>-1</sup>)`,   `A.inv([method])*B (~ X: AX=B)`
 | 
						|
-   Comparison: `A cmpop B`, `A cmpop alpha`, `alpha cmpop A`, where *cmpop* is one of
 | 
						|
  `>`, `>=`, `==`, `!=`, `<=`, `<`. The result of comparison is an 8-bit single channel mask whose
 | 
						|
    elements are set to 255 (if the particular element or pair of elements satisfy the condition) or
 | 
						|
    0.
 | 
						|
-   Bitwise logical operations: `A logicop B`, `A logicop s`, `s logicop A`, `~A`, where *logicop* is one of
 | 
						|
  `&`, `|`, `^`.
 | 
						|
-   Element-wise minimum and maximum: `min(A, B)`, `min(A, alpha)`, `max(A, B)`, `max(A, alpha)`
 | 
						|
-   Element-wise absolute value: `abs(A)`
 | 
						|
-   Cross-product, dot-product: `A.cross(B)`, `A.dot(B)`
 | 
						|
-   Any function of matrix or matrices and scalars that returns a matrix or a scalar, such as norm,
 | 
						|
    mean, sum, countNonZero, trace, determinant, repeat, and others.
 | 
						|
-   Matrix initializers ( Mat::eye(), Mat::zeros(), Mat::ones() ), matrix comma-separated
 | 
						|
    initializers, matrix constructors and operators that extract sub-matrices (see Mat description).
 | 
						|
-   Mat_<destination_type>() constructors to cast the result to the proper type.
 | 
						|
@note Comma-separated initializers and probably some other operations may require additional
 | 
						|
explicit Mat() or Mat_<T>() constructor calls to resolve a possible ambiguity.
 | 
						|
 | 
						|
Here are examples of matrix expressions:
 | 
						|
@code
 | 
						|
    // compute pseudo-inverse of A, equivalent to A.inv(DECOMP_SVD)
 | 
						|
    SVD svd(A);
 | 
						|
    Mat pinvA = svd.vt.t()*Mat::diag(1./svd.w)*svd.u.t();
 | 
						|
 | 
						|
    // compute the new vector of parameters in the Levenberg-Marquardt algorithm
 | 
						|
    x -= (A.t()*A + lambda*Mat::eye(A.cols,A.cols,A.type())).inv(DECOMP_CHOLESKY)*(A.t()*err);
 | 
						|
 | 
						|
    // sharpen image using "unsharp mask" algorithm
 | 
						|
    Mat blurred; double sigma = 1, threshold = 5, amount = 1;
 | 
						|
    GaussianBlur(img, blurred, Size(), sigma, sigma);
 | 
						|
    Mat lowContrastMask = abs(img - blurred) < threshold;
 | 
						|
    Mat sharpened = img*(1+amount) + blurred*(-amount);
 | 
						|
    img.copyTo(sharpened, lowContrastMask);
 | 
						|
@endcode
 | 
						|
*/
 | 
						|
class CV_EXPORTS MatExpr
 | 
						|
{
 | 
						|
public:
 | 
						|
    MatExpr();
 | 
						|
    explicit MatExpr(const Mat& m);
 | 
						|
 | 
						|
    MatExpr(const MatOp* _op, int _flags, const Mat& _a = Mat(), const Mat& _b = Mat(),
 | 
						|
            const Mat& _c = Mat(), double _alpha = 1, double _beta = 1, const Scalar& _s = Scalar());
 | 
						|
 | 
						|
    operator Mat() const;
 | 
						|
    template<typename _Tp> operator Mat_<_Tp>() const;
 | 
						|
 | 
						|
    Size size() const;
 | 
						|
    int type() const;
 | 
						|
 | 
						|
    MatExpr row(int y) const;
 | 
						|
    MatExpr col(int x) const;
 | 
						|
    MatExpr diag(int d = 0) const;
 | 
						|
    MatExpr operator()( const Range& rowRange, const Range& colRange ) const;
 | 
						|
    MatExpr operator()( const Rect& roi ) const;
 | 
						|
 | 
						|
    MatExpr t() const;
 | 
						|
    MatExpr inv(int method = DECOMP_LU) const;
 | 
						|
    MatExpr mul(const MatExpr& e, double scale=1) const;
 | 
						|
    MatExpr mul(const Mat& m, double scale=1) const;
 | 
						|
 | 
						|
    Mat cross(const Mat& m) const;
 | 
						|
    double dot(const Mat& m) const;
 | 
						|
 | 
						|
    void swap(MatExpr& b);
 | 
						|
 | 
						|
    const MatOp* op;
 | 
						|
    int flags;
 | 
						|
 | 
						|
    Mat a, b, c;
 | 
						|
    double alpha, beta;
 | 
						|
    Scalar s;
 | 
						|
};
 | 
						|
 | 
						|
//! @} core_basic
 | 
						|
 | 
						|
//! @relates cv::MatExpr
 | 
						|
//! @{
 | 
						|
CV_EXPORTS MatExpr operator + (const Mat& a, const Mat& b);
 | 
						|
CV_EXPORTS MatExpr operator + (const Mat& a, const Scalar& s);
 | 
						|
CV_EXPORTS MatExpr operator + (const Scalar& s, const Mat& a);
 | 
						|
CV_EXPORTS MatExpr operator + (const MatExpr& e, const Mat& m);
 | 
						|
CV_EXPORTS MatExpr operator + (const Mat& m, const MatExpr& e);
 | 
						|
CV_EXPORTS MatExpr operator + (const MatExpr& e, const Scalar& s);
 | 
						|
CV_EXPORTS MatExpr operator + (const Scalar& s, const MatExpr& e);
 | 
						|
CV_EXPORTS MatExpr operator + (const MatExpr& e1, const MatExpr& e2);
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator + (const Mat& a, const Matx<_Tp, m, n>& b) { return a + Mat(b); }
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator + (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) + b; }
 | 
						|
 | 
						|
CV_EXPORTS MatExpr operator - (const Mat& a, const Mat& b);
 | 
						|
CV_EXPORTS MatExpr operator - (const Mat& a, const Scalar& s);
 | 
						|
CV_EXPORTS MatExpr operator - (const Scalar& s, const Mat& a);
 | 
						|
CV_EXPORTS MatExpr operator - (const MatExpr& e, const Mat& m);
 | 
						|
CV_EXPORTS MatExpr operator - (const Mat& m, const MatExpr& e);
 | 
						|
CV_EXPORTS MatExpr operator - (const MatExpr& e, const Scalar& s);
 | 
						|
CV_EXPORTS MatExpr operator - (const Scalar& s, const MatExpr& e);
 | 
						|
CV_EXPORTS MatExpr operator - (const MatExpr& e1, const MatExpr& e2);
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator - (const Mat& a, const Matx<_Tp, m, n>& b) { return a - Mat(b); }
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator - (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) - b; }
 | 
						|
 | 
						|
CV_EXPORTS MatExpr operator - (const Mat& m);
 | 
						|
CV_EXPORTS MatExpr operator - (const MatExpr& e);
 | 
						|
 | 
						|
CV_EXPORTS MatExpr operator * (const Mat& a, const Mat& b);
 | 
						|
CV_EXPORTS MatExpr operator * (const Mat& a, double s);
 | 
						|
CV_EXPORTS MatExpr operator * (double s, const Mat& a);
 | 
						|
CV_EXPORTS MatExpr operator * (const MatExpr& e, const Mat& m);
 | 
						|
CV_EXPORTS MatExpr operator * (const Mat& m, const MatExpr& e);
 | 
						|
CV_EXPORTS MatExpr operator * (const MatExpr& e, double s);
 | 
						|
CV_EXPORTS MatExpr operator * (double s, const MatExpr& e);
 | 
						|
CV_EXPORTS MatExpr operator * (const MatExpr& e1, const MatExpr& e2);
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator * (const Mat& a, const Matx<_Tp, m, n>& b) { return a * Mat(b); }
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator * (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) * b; }
 | 
						|
 | 
						|
CV_EXPORTS MatExpr operator / (const Mat& a, const Mat& b);
 | 
						|
CV_EXPORTS MatExpr operator / (const Mat& a, double s);
 | 
						|
CV_EXPORTS MatExpr operator / (double s, const Mat& a);
 | 
						|
CV_EXPORTS MatExpr operator / (const MatExpr& e, const Mat& m);
 | 
						|
CV_EXPORTS MatExpr operator / (const Mat& m, const MatExpr& e);
 | 
						|
CV_EXPORTS MatExpr operator / (const MatExpr& e, double s);
 | 
						|
CV_EXPORTS MatExpr operator / (double s, const MatExpr& e);
 | 
						|
CV_EXPORTS MatExpr operator / (const MatExpr& e1, const MatExpr& e2);
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator / (const Mat& a, const Matx<_Tp, m, n>& b) { return a / Mat(b); }
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator / (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) / b; }
 | 
						|
 | 
						|
CV_EXPORTS MatExpr operator < (const Mat& a, const Mat& b);
 | 
						|
CV_EXPORTS MatExpr operator < (const Mat& a, double s);
 | 
						|
CV_EXPORTS MatExpr operator < (double s, const Mat& a);
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator < (const Mat& a, const Matx<_Tp, m, n>& b) { return a < Mat(b); }
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator < (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) < b; }
 | 
						|
 | 
						|
CV_EXPORTS MatExpr operator <= (const Mat& a, const Mat& b);
 | 
						|
CV_EXPORTS MatExpr operator <= (const Mat& a, double s);
 | 
						|
CV_EXPORTS MatExpr operator <= (double s, const Mat& a);
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator <= (const Mat& a, const Matx<_Tp, m, n>& b) { return a <= Mat(b); }
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator <= (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) <= b; }
 | 
						|
 | 
						|
CV_EXPORTS MatExpr operator == (const Mat& a, const Mat& b);
 | 
						|
CV_EXPORTS MatExpr operator == (const Mat& a, double s);
 | 
						|
CV_EXPORTS MatExpr operator == (double s, const Mat& a);
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator == (const Mat& a, const Matx<_Tp, m, n>& b) { return a == Mat(b); }
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator == (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) == b; }
 | 
						|
 | 
						|
CV_EXPORTS MatExpr operator != (const Mat& a, const Mat& b);
 | 
						|
CV_EXPORTS MatExpr operator != (const Mat& a, double s);
 | 
						|
CV_EXPORTS MatExpr operator != (double s, const Mat& a);
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator != (const Mat& a, const Matx<_Tp, m, n>& b) { return a != Mat(b); }
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator != (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) != b; }
 | 
						|
 | 
						|
CV_EXPORTS MatExpr operator >= (const Mat& a, const Mat& b);
 | 
						|
CV_EXPORTS MatExpr operator >= (const Mat& a, double s);
 | 
						|
CV_EXPORTS MatExpr operator >= (double s, const Mat& a);
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator >= (const Mat& a, const Matx<_Tp, m, n>& b) { return a >= Mat(b); }
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator >= (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) >= b; }
 | 
						|
 | 
						|
CV_EXPORTS MatExpr operator > (const Mat& a, const Mat& b);
 | 
						|
CV_EXPORTS MatExpr operator > (const Mat& a, double s);
 | 
						|
CV_EXPORTS MatExpr operator > (double s, const Mat& a);
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator > (const Mat& a, const Matx<_Tp, m, n>& b) { return a > Mat(b); }
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator > (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) > b; }
 | 
						|
 | 
						|
CV_EXPORTS MatExpr operator & (const Mat& a, const Mat& b);
 | 
						|
CV_EXPORTS MatExpr operator & (const Mat& a, const Scalar& s);
 | 
						|
CV_EXPORTS MatExpr operator & (const Scalar& s, const Mat& a);
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator & (const Mat& a, const Matx<_Tp, m, n>& b) { return a & Mat(b); }
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator & (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) & b; }
 | 
						|
 | 
						|
CV_EXPORTS MatExpr operator | (const Mat& a, const Mat& b);
 | 
						|
CV_EXPORTS MatExpr operator | (const Mat& a, const Scalar& s);
 | 
						|
CV_EXPORTS MatExpr operator | (const Scalar& s, const Mat& a);
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator | (const Mat& a, const Matx<_Tp, m, n>& b) { return a | Mat(b); }
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator | (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) | b; }
 | 
						|
 | 
						|
CV_EXPORTS MatExpr operator ^ (const Mat& a, const Mat& b);
 | 
						|
CV_EXPORTS MatExpr operator ^ (const Mat& a, const Scalar& s);
 | 
						|
CV_EXPORTS MatExpr operator ^ (const Scalar& s, const Mat& a);
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator ^ (const Mat& a, const Matx<_Tp, m, n>& b) { return a ^ Mat(b); }
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr operator ^ (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) ^ b; }
 | 
						|
 | 
						|
CV_EXPORTS MatExpr operator ~(const Mat& m);
 | 
						|
 | 
						|
CV_EXPORTS MatExpr min(const Mat& a, const Mat& b);
 | 
						|
CV_EXPORTS MatExpr min(const Mat& a, double s);
 | 
						|
CV_EXPORTS MatExpr min(double s, const Mat& a);
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr min (const Mat& a, const Matx<_Tp, m, n>& b) { return min(a, Mat(b)); }
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr min (const Matx<_Tp, m, n>& a, const Mat& b) { return min(Mat(a), b); }
 | 
						|
 | 
						|
CV_EXPORTS MatExpr max(const Mat& a, const Mat& b);
 | 
						|
CV_EXPORTS MatExpr max(const Mat& a, double s);
 | 
						|
CV_EXPORTS MatExpr max(double s, const Mat& a);
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr max (const Mat& a, const Matx<_Tp, m, n>& b) { return max(a, Mat(b)); }
 | 
						|
template<typename _Tp, int m, int n> static inline
 | 
						|
MatExpr max (const Matx<_Tp, m, n>& a, const Mat& b) { return max(Mat(a), b); }
 | 
						|
 | 
						|
/** @brief Calculates an absolute value of each matrix element.
 | 
						|
 | 
						|
abs is a meta-function that is expanded to one of absdiff or convertScaleAbs forms:
 | 
						|
- C = abs(A-B) is equivalent to `absdiff(A, B, C)`
 | 
						|
- C = abs(A) is equivalent to `absdiff(A, Scalar::all(0), C)`
 | 
						|
- C = `Mat_<Vec<uchar,n> >(abs(A*alpha + beta))` is equivalent to `convertScaleAbs(A, C, alpha,
 | 
						|
beta)`
 | 
						|
 | 
						|
The output matrix has the same size and the same type as the input one except for the last case,
 | 
						|
where C is depth=CV_8U .
 | 
						|
@param m matrix.
 | 
						|
@sa @ref MatrixExpressions, absdiff, convertScaleAbs
 | 
						|
 */
 | 
						|
CV_EXPORTS MatExpr abs(const Mat& m);
 | 
						|
/** @overload
 | 
						|
@param e matrix expression.
 | 
						|
*/
 | 
						|
CV_EXPORTS MatExpr abs(const MatExpr& e);
 | 
						|
//! @} relates cv::MatExpr
 | 
						|
 | 
						|
} // cv
 | 
						|
 | 
						|
#include "opencv2/core/mat.inl.hpp"
 | 
						|
 | 
						|
#endif // OPENCV_CORE_MAT_HPP
 |