You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			1536 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
			
		
		
	
	
			1536 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#ifndef OPENCV_FEATURES_2D_HPP
 | 
						|
#define OPENCV_FEATURES_2D_HPP
 | 
						|
 | 
						|
#include "opencv2/opencv_modules.hpp"
 | 
						|
#include "opencv2/core.hpp"
 | 
						|
 | 
						|
#ifdef HAVE_OPENCV_FLANN
 | 
						|
#include "opencv2/flann/miniflann.hpp"
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
  @defgroup features2d 2D Features Framework
 | 
						|
  @{
 | 
						|
    @defgroup features2d_main Feature Detection and Description
 | 
						|
    @defgroup features2d_match Descriptor Matchers
 | 
						|
 | 
						|
Matchers of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to
 | 
						|
easily switch between different algorithms solving the same problem. This section is devoted to
 | 
						|
matching descriptors that are represented as vectors in a multidimensional space. All objects that
 | 
						|
implement vector descriptor matchers inherit the DescriptorMatcher interface.
 | 
						|
 | 
						|
    @defgroup features2d_draw Drawing Function of Keypoints and Matches
 | 
						|
    @defgroup features2d_category Object Categorization
 | 
						|
 | 
						|
This section describes approaches based on local 2D features and used to categorize objects.
 | 
						|
 | 
						|
    @defgroup feature2d_hal Hardware Acceleration Layer
 | 
						|
    @{
 | 
						|
        @defgroup features2d_hal_interface Interface
 | 
						|
    @}
 | 
						|
  @}
 | 
						|
 */
 | 
						|
 | 
						|
namespace cv
 | 
						|
{
 | 
						|
 | 
						|
//! @addtogroup features2d_main
 | 
						|
//! @{
 | 
						|
 | 
						|
// //! writes vector of keypoints to the file storage
 | 
						|
// CV_EXPORTS void write(FileStorage& fs, const String& name, const std::vector<KeyPoint>& keypoints);
 | 
						|
// //! reads vector of keypoints from the specified file storage node
 | 
						|
// CV_EXPORTS void read(const FileNode& node, CV_OUT std::vector<KeyPoint>& keypoints);
 | 
						|
 | 
						|
/** @brief A class filters a vector of keypoints.
 | 
						|
 | 
						|
 Because now it is difficult to provide a convenient interface for all usage scenarios of the
 | 
						|
 keypoints filter class, it has only several needed by now static methods.
 | 
						|
 */
 | 
						|
class CV_EXPORTS KeyPointsFilter
 | 
						|
{
 | 
						|
public:
 | 
						|
    KeyPointsFilter(){}
 | 
						|
 | 
						|
    /*
 | 
						|
     * Remove keypoints within borderPixels of an image edge.
 | 
						|
     */
 | 
						|
    static void runByImageBorder( std::vector<KeyPoint>& keypoints, Size imageSize, int borderSize );
 | 
						|
    /*
 | 
						|
     * Remove keypoints of sizes out of range.
 | 
						|
     */
 | 
						|
    static void runByKeypointSize( std::vector<KeyPoint>& keypoints, float minSize,
 | 
						|
                                   float maxSize=FLT_MAX );
 | 
						|
    /*
 | 
						|
     * Remove keypoints from some image by mask for pixels of this image.
 | 
						|
     */
 | 
						|
    static void runByPixelsMask( std::vector<KeyPoint>& keypoints, const Mat& mask );
 | 
						|
    /*
 | 
						|
     * Remove duplicated keypoints.
 | 
						|
     */
 | 
						|
    static void removeDuplicated( std::vector<KeyPoint>& keypoints );
 | 
						|
    /*
 | 
						|
     * Remove duplicated keypoints and sort the remaining keypoints
 | 
						|
     */
 | 
						|
    static void removeDuplicatedSorted( std::vector<KeyPoint>& keypoints );
 | 
						|
 | 
						|
    /*
 | 
						|
     * Retain the specified number of the best keypoints (according to the response)
 | 
						|
     */
 | 
						|
    static void retainBest( std::vector<KeyPoint>& keypoints, int npoints );
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/************************************ Base Classes ************************************/
 | 
						|
 | 
						|
/** @brief Abstract base class for 2D image feature detectors and descriptor extractors
 | 
						|
*/
 | 
						|
#ifdef __EMSCRIPTEN__
 | 
						|
class CV_EXPORTS_W Feature2D : public Algorithm
 | 
						|
#else
 | 
						|
class CV_EXPORTS_W Feature2D : public virtual Algorithm
 | 
						|
#endif
 | 
						|
{
 | 
						|
public:
 | 
						|
    virtual ~Feature2D();
 | 
						|
 | 
						|
    /** @brief Detects keypoints in an image (first variant) or image set (second variant).
 | 
						|
 | 
						|
    @param image Image.
 | 
						|
    @param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set
 | 
						|
    of keypoints detected in images[i] .
 | 
						|
    @param mask Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
 | 
						|
    matrix with non-zero values in the region of interest.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual void detect( InputArray image,
 | 
						|
                                 CV_OUT std::vector<KeyPoint>& keypoints,
 | 
						|
                                 InputArray mask=noArray() );
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param images Image set.
 | 
						|
    @param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set
 | 
						|
    of keypoints detected in images[i] .
 | 
						|
    @param masks Masks for each input image specifying where to look for keypoints (optional).
 | 
						|
    masks[i] is a mask for images[i].
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void detect( InputArrayOfArrays images,
 | 
						|
                         CV_OUT std::vector<std::vector<KeyPoint> >& keypoints,
 | 
						|
                         InputArrayOfArrays masks=noArray() );
 | 
						|
 | 
						|
    /** @brief Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
 | 
						|
    (second variant).
 | 
						|
 | 
						|
    @param image Image.
 | 
						|
    @param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be
 | 
						|
    computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
 | 
						|
    with several dominant orientations (for each orientation).
 | 
						|
    @param descriptors Computed descriptors. In the second variant of the method descriptors[i] are
 | 
						|
    descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
 | 
						|
    descriptor for keypoint j-th keypoint.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual void compute( InputArray image,
 | 
						|
                                  CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints,
 | 
						|
                                  OutputArray descriptors );
 | 
						|
 | 
						|
    /** @overload
 | 
						|
 | 
						|
    @param images Image set.
 | 
						|
    @param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be
 | 
						|
    computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
 | 
						|
    with several dominant orientations (for each orientation).
 | 
						|
    @param descriptors Computed descriptors. In the second variant of the method descriptors[i] are
 | 
						|
    descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
 | 
						|
    descriptor for keypoint j-th keypoint.
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void compute( InputArrayOfArrays images,
 | 
						|
                          CV_OUT CV_IN_OUT std::vector<std::vector<KeyPoint> >& keypoints,
 | 
						|
                          OutputArrayOfArrays descriptors );
 | 
						|
 | 
						|
    /** Detects keypoints and computes the descriptors */
 | 
						|
    CV_WRAP virtual void detectAndCompute( InputArray image, InputArray mask,
 | 
						|
                                           CV_OUT std::vector<KeyPoint>& keypoints,
 | 
						|
                                           OutputArray descriptors,
 | 
						|
                                           bool useProvidedKeypoints=false );
 | 
						|
 | 
						|
    CV_WRAP virtual int descriptorSize() const;
 | 
						|
    CV_WRAP virtual int descriptorType() const;
 | 
						|
    CV_WRAP virtual int defaultNorm() const;
 | 
						|
 | 
						|
    CV_WRAP void write( const String& fileName ) const;
 | 
						|
 | 
						|
    CV_WRAP void read( const String& fileName );
 | 
						|
 | 
						|
    virtual void write( FileStorage&) const CV_OVERRIDE;
 | 
						|
 | 
						|
    // see corresponding cv::Algorithm method
 | 
						|
    CV_WRAP virtual void read( const FileNode&) CV_OVERRIDE;
 | 
						|
 | 
						|
    //! Return true if detector object is empty
 | 
						|
    CV_WRAP virtual bool empty() const CV_OVERRIDE;
 | 
						|
    CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
 | 
						|
 | 
						|
    // see corresponding cv::Algorithm method
 | 
						|
    CV_WRAP inline void write(const Ptr<FileStorage>& fs, const String& name = String()) const { Algorithm::write(fs, name); }
 | 
						|
};
 | 
						|
 | 
						|
/** Feature detectors in OpenCV have wrappers with a common interface that enables you to easily switch
 | 
						|
between different algorithms solving the same problem. All objects that implement keypoint detectors
 | 
						|
inherit the FeatureDetector interface. */
 | 
						|
typedef Feature2D FeatureDetector;
 | 
						|
 | 
						|
/** Extractors of keypoint descriptors in OpenCV have wrappers with a common interface that enables you
 | 
						|
to easily switch between different algorithms solving the same problem. This section is devoted to
 | 
						|
computing descriptors represented as vectors in a multidimensional space. All objects that implement
 | 
						|
the vector descriptor extractors inherit the DescriptorExtractor interface.
 | 
						|
 */
 | 
						|
typedef Feature2D DescriptorExtractor;
 | 
						|
 | 
						|
 | 
						|
/** @brief Class for implementing the wrapper which makes detectors and extractors to be affine invariant,
 | 
						|
described as ASIFT in @cite YM11 .
 | 
						|
*/
 | 
						|
class CV_EXPORTS_W AffineFeature : public Feature2D
 | 
						|
{
 | 
						|
public:
 | 
						|
    /**
 | 
						|
    @param backend The detector/extractor you want to use as backend.
 | 
						|
    @param maxTilt The highest power index of tilt factor. 5 is used in the paper as tilt sampling range n.
 | 
						|
    @param minTilt The lowest power index of tilt factor. 0 is used in the paper.
 | 
						|
    @param tiltStep Tilt sampling step \f$\delta_t\f$ in Algorithm 1 in the paper.
 | 
						|
    @param rotateStepBase Rotation sampling step factor b in Algorithm 1 in the paper.
 | 
						|
    */
 | 
						|
    CV_WRAP static Ptr<AffineFeature> create(const Ptr<Feature2D>& backend,
 | 
						|
        int maxTilt = 5, int minTilt = 0, float tiltStep = 1.4142135623730951f, float rotateStepBase = 72);
 | 
						|
 | 
						|
    CV_WRAP virtual void setViewParams(const std::vector<float>& tilts, const std::vector<float>& rolls) = 0;
 | 
						|
    CV_WRAP virtual void getViewParams(std::vector<float>& tilts, std::vector<float>& rolls) const = 0;
 | 
						|
    CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
 | 
						|
};
 | 
						|
 | 
						|
typedef AffineFeature AffineFeatureDetector;
 | 
						|
typedef AffineFeature AffineDescriptorExtractor;
 | 
						|
 | 
						|
 | 
						|
/** @brief Class for extracting keypoints and computing descriptors using the Scale Invariant Feature Transform
 | 
						|
(SIFT) algorithm by D. Lowe @cite Lowe04 .
 | 
						|
*/
 | 
						|
class CV_EXPORTS_W SIFT : public Feature2D
 | 
						|
{
 | 
						|
public:
 | 
						|
    /**
 | 
						|
    @param nfeatures The number of best features to retain. The features are ranked by their scores
 | 
						|
    (measured in SIFT algorithm as the local contrast)
 | 
						|
 | 
						|
    @param nOctaveLayers The number of layers in each octave. 3 is the value used in D. Lowe paper. The
 | 
						|
    number of octaves is computed automatically from the image resolution.
 | 
						|
 | 
						|
    @param contrastThreshold The contrast threshold used to filter out weak features in semi-uniform
 | 
						|
    (low-contrast) regions. The larger the threshold, the less features are produced by the detector.
 | 
						|
 | 
						|
    @note The contrast threshold will be divided by nOctaveLayers when the filtering is applied. When
 | 
						|
    nOctaveLayers is set to default and if you want to use the value used in D. Lowe paper, 0.03, set
 | 
						|
    this argument to 0.09.
 | 
						|
 | 
						|
    @param edgeThreshold The threshold used to filter out edge-like features. Note that the its meaning
 | 
						|
    is different from the contrastThreshold, i.e. the larger the edgeThreshold, the less features are
 | 
						|
    filtered out (more features are retained).
 | 
						|
 | 
						|
    @param sigma The sigma of the Gaussian applied to the input image at the octave \#0. If your image
 | 
						|
    is captured with a weak camera with soft lenses, you might want to reduce the number.
 | 
						|
    */
 | 
						|
    CV_WRAP static Ptr<SIFT> create(int nfeatures = 0, int nOctaveLayers = 3,
 | 
						|
        double contrastThreshold = 0.04, double edgeThreshold = 10,
 | 
						|
        double sigma = 1.6);
 | 
						|
 | 
						|
    /** @brief Create SIFT with specified descriptorType.
 | 
						|
    @param nfeatures The number of best features to retain. The features are ranked by their scores
 | 
						|
    (measured in SIFT algorithm as the local contrast)
 | 
						|
 | 
						|
    @param nOctaveLayers The number of layers in each octave. 3 is the value used in D. Lowe paper. The
 | 
						|
    number of octaves is computed automatically from the image resolution.
 | 
						|
 | 
						|
    @param contrastThreshold The contrast threshold used to filter out weak features in semi-uniform
 | 
						|
    (low-contrast) regions. The larger the threshold, the less features are produced by the detector.
 | 
						|
 | 
						|
    @note The contrast threshold will be divided by nOctaveLayers when the filtering is applied. When
 | 
						|
    nOctaveLayers is set to default and if you want to use the value used in D. Lowe paper, 0.03, set
 | 
						|
    this argument to 0.09.
 | 
						|
 | 
						|
    @param edgeThreshold The threshold used to filter out edge-like features. Note that the its meaning
 | 
						|
    is different from the contrastThreshold, i.e. the larger the edgeThreshold, the less features are
 | 
						|
    filtered out (more features are retained).
 | 
						|
 | 
						|
    @param sigma The sigma of the Gaussian applied to the input image at the octave \#0. If your image
 | 
						|
    is captured with a weak camera with soft lenses, you might want to reduce the number.
 | 
						|
 | 
						|
    @param descriptorType The type of descriptors. Only CV_32F and CV_8U are supported.
 | 
						|
    */
 | 
						|
    CV_WRAP static Ptr<SIFT> create(int nfeatures, int nOctaveLayers,
 | 
						|
        double contrastThreshold, double edgeThreshold,
 | 
						|
        double sigma, int descriptorType);
 | 
						|
 | 
						|
    CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
 | 
						|
};
 | 
						|
 | 
						|
typedef SIFT SiftFeatureDetector;
 | 
						|
typedef SIFT SiftDescriptorExtractor;
 | 
						|
 | 
						|
 | 
						|
/** @brief Class implementing the BRISK keypoint detector and descriptor extractor, described in @cite LCS11 .
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W BRISK : public Feature2D
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** @brief The BRISK constructor
 | 
						|
 | 
						|
    @param thresh AGAST detection threshold score.
 | 
						|
    @param octaves detection octaves. Use 0 to do single scale.
 | 
						|
    @param patternScale apply this scale to the pattern used for sampling the neighbourhood of a
 | 
						|
    keypoint.
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<BRISK> create(int thresh=30, int octaves=3, float patternScale=1.0f);
 | 
						|
 | 
						|
    /** @brief The BRISK constructor for a custom pattern
 | 
						|
 | 
						|
    @param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for
 | 
						|
    keypoint scale 1).
 | 
						|
    @param numberList defines the number of sampling points on the sampling circle. Must be the same
 | 
						|
    size as radiusList..
 | 
						|
    @param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint
 | 
						|
    scale 1).
 | 
						|
    @param dMin threshold for the long pairings used for orientation determination (in pixels for
 | 
						|
    keypoint scale 1).
 | 
						|
    @param indexChange index remapping of the bits. */
 | 
						|
    CV_WRAP static Ptr<BRISK> create(const std::vector<float> &radiusList, const std::vector<int> &numberList,
 | 
						|
        float dMax=5.85f, float dMin=8.2f, const std::vector<int>& indexChange=std::vector<int>());
 | 
						|
 | 
						|
    /** @brief The BRISK constructor for a custom pattern, detection threshold and octaves
 | 
						|
 | 
						|
    @param thresh AGAST detection threshold score.
 | 
						|
    @param octaves detection octaves. Use 0 to do single scale.
 | 
						|
    @param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for
 | 
						|
    keypoint scale 1).
 | 
						|
    @param numberList defines the number of sampling points on the sampling circle. Must be the same
 | 
						|
    size as radiusList..
 | 
						|
    @param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint
 | 
						|
    scale 1).
 | 
						|
    @param dMin threshold for the long pairings used for orientation determination (in pixels for
 | 
						|
    keypoint scale 1).
 | 
						|
    @param indexChange index remapping of the bits. */
 | 
						|
    CV_WRAP static Ptr<BRISK> create(int thresh, int octaves, const std::vector<float> &radiusList,
 | 
						|
        const std::vector<int> &numberList, float dMax=5.85f, float dMin=8.2f,
 | 
						|
        const std::vector<int>& indexChange=std::vector<int>());
 | 
						|
    CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
 | 
						|
 | 
						|
    /** @brief Set detection threshold.
 | 
						|
    @param threshold AGAST detection threshold score.
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void setThreshold(int threshold) { CV_UNUSED(threshold); return; }
 | 
						|
    CV_WRAP virtual int getThreshold() const { return -1; }
 | 
						|
 | 
						|
    /** @brief Set detection octaves.
 | 
						|
    @param octaves detection octaves. Use 0 to do single scale.
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void setOctaves(int octaves) { CV_UNUSED(octaves); return; }
 | 
						|
    CV_WRAP virtual int getOctaves() const { return -1; }
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Class implementing the ORB (*oriented BRIEF*) keypoint detector and descriptor extractor
 | 
						|
 | 
						|
described in @cite RRKB11 . The algorithm uses FAST in pyramids to detect stable keypoints, selects
 | 
						|
the strongest features using FAST or Harris response, finds their orientation using first-order
 | 
						|
moments and computes the descriptors using BRIEF (where the coordinates of random point pairs (or
 | 
						|
k-tuples) are rotated according to the measured orientation).
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W ORB : public Feature2D
 | 
						|
{
 | 
						|
public:
 | 
						|
    enum ScoreType { HARRIS_SCORE=0, FAST_SCORE=1 };
 | 
						|
    static const int kBytes = 32;
 | 
						|
 | 
						|
    /** @brief The ORB constructor
 | 
						|
 | 
						|
    @param nfeatures The maximum number of features to retain.
 | 
						|
    @param scaleFactor Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical
 | 
						|
    pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor
 | 
						|
    will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor
 | 
						|
    will mean that to cover certain scale range you will need more pyramid levels and so the speed
 | 
						|
    will suffer.
 | 
						|
    @param nlevels The number of pyramid levels. The smallest level will have linear size equal to
 | 
						|
    input_image_linear_size/pow(scaleFactor, nlevels - firstLevel).
 | 
						|
    @param edgeThreshold This is size of the border where the features are not detected. It should
 | 
						|
    roughly match the patchSize parameter.
 | 
						|
    @param firstLevel The level of pyramid to put source image to. Previous layers are filled
 | 
						|
    with upscaled source image.
 | 
						|
    @param WTA_K The number of points that produce each element of the oriented BRIEF descriptor. The
 | 
						|
    default value 2 means the BRIEF where we take a random point pair and compare their brightnesses,
 | 
						|
    so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3
 | 
						|
    random points (of course, those point coordinates are random, but they are generated from the
 | 
						|
    pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel
 | 
						|
    rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such
 | 
						|
    output will occupy 2 bits, and therefore it will need a special variant of Hamming distance,
 | 
						|
    denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each
 | 
						|
    bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3).
 | 
						|
    @param scoreType The default HARRIS_SCORE means that Harris algorithm is used to rank features
 | 
						|
    (the score is written to KeyPoint::score and is used to retain best nfeatures features);
 | 
						|
    FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints,
 | 
						|
    but it is a little faster to compute.
 | 
						|
    @param patchSize size of the patch used by the oriented BRIEF descriptor. Of course, on smaller
 | 
						|
    pyramid layers the perceived image area covered by a feature will be larger.
 | 
						|
    @param fastThreshold the fast threshold
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<ORB> create(int nfeatures=500, float scaleFactor=1.2f, int nlevels=8, int edgeThreshold=31,
 | 
						|
        int firstLevel=0, int WTA_K=2, ORB::ScoreType scoreType=ORB::HARRIS_SCORE, int patchSize=31, int fastThreshold=20);
 | 
						|
 | 
						|
    CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0;
 | 
						|
    CV_WRAP virtual int getMaxFeatures() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setScaleFactor(double scaleFactor) = 0;
 | 
						|
    CV_WRAP virtual double getScaleFactor() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setNLevels(int nlevels) = 0;
 | 
						|
    CV_WRAP virtual int getNLevels() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setEdgeThreshold(int edgeThreshold) = 0;
 | 
						|
    CV_WRAP virtual int getEdgeThreshold() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setFirstLevel(int firstLevel) = 0;
 | 
						|
    CV_WRAP virtual int getFirstLevel() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setWTA_K(int wta_k) = 0;
 | 
						|
    CV_WRAP virtual int getWTA_K() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setScoreType(ORB::ScoreType scoreType) = 0;
 | 
						|
    CV_WRAP virtual ORB::ScoreType getScoreType() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setPatchSize(int patchSize) = 0;
 | 
						|
    CV_WRAP virtual int getPatchSize() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setFastThreshold(int fastThreshold) = 0;
 | 
						|
    CV_WRAP virtual int getFastThreshold() const = 0;
 | 
						|
    CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Maximally stable extremal region extractor
 | 
						|
 | 
						|
The class encapsulates all the parameters of the %MSER extraction algorithm (see [wiki
 | 
						|
article](http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions)).
 | 
						|
 | 
						|
- there are two different implementation of %MSER: one for grey image, one for color image
 | 
						|
 | 
						|
- the grey image algorithm is taken from: @cite nister2008linear ;  the paper claims to be faster
 | 
						|
than union-find method; it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop.
 | 
						|
 | 
						|
- the color image algorithm is taken from: @cite forssen2007maximally ; it should be much slower
 | 
						|
than grey image method ( 3~4 times )
 | 
						|
 | 
						|
- (Python) A complete example showing the use of the %MSER detector can be found at samples/python/mser.py
 | 
						|
*/
 | 
						|
class CV_EXPORTS_W MSER : public Feature2D
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** @brief Full constructor for %MSER detector
 | 
						|
 | 
						|
    @param delta it compares \f$(size_{i}-size_{i-delta})/size_{i-delta}\f$
 | 
						|
    @param min_area prune the area which smaller than minArea
 | 
						|
    @param max_area prune the area which bigger than maxArea
 | 
						|
    @param max_variation prune the area have similar size to its children
 | 
						|
    @param min_diversity for color image, trace back to cut off mser with diversity less than min_diversity
 | 
						|
    @param max_evolution  for color image, the evolution steps
 | 
						|
    @param area_threshold for color image, the area threshold to cause re-initialize
 | 
						|
    @param min_margin for color image, ignore too small margin
 | 
						|
    @param edge_blur_size for color image, the aperture size for edge blur
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<MSER> create( int delta=5, int min_area=60, int max_area=14400,
 | 
						|
          double max_variation=0.25, double min_diversity=.2,
 | 
						|
          int max_evolution=200, double area_threshold=1.01,
 | 
						|
          double min_margin=0.003, int edge_blur_size=5 );
 | 
						|
 | 
						|
    /** @brief Detect %MSER regions
 | 
						|
 | 
						|
    @param image input image (8UC1, 8UC3 or 8UC4, must be greater or equal than 3x3)
 | 
						|
    @param msers resulting list of point sets
 | 
						|
    @param bboxes resulting bounding boxes
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void detectRegions( InputArray image,
 | 
						|
                                        CV_OUT std::vector<std::vector<Point> >& msers,
 | 
						|
                                        CV_OUT std::vector<Rect>& bboxes ) = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setDelta(int delta) = 0;
 | 
						|
    CV_WRAP virtual int getDelta() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setMinArea(int minArea) = 0;
 | 
						|
    CV_WRAP virtual int getMinArea() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setMaxArea(int maxArea) = 0;
 | 
						|
    CV_WRAP virtual int getMaxArea() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setPass2Only(bool f) = 0;
 | 
						|
    CV_WRAP virtual bool getPass2Only() const = 0;
 | 
						|
    CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
 | 
						|
};
 | 
						|
 | 
						|
//! @} features2d_main
 | 
						|
 | 
						|
//! @addtogroup features2d_main
 | 
						|
//! @{
 | 
						|
 | 
						|
/** @brief Wrapping class for feature detection using the FAST method. :
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W FastFeatureDetector : public Feature2D
 | 
						|
{
 | 
						|
public:
 | 
						|
    enum DetectorType
 | 
						|
    {
 | 
						|
        TYPE_5_8 = 0, TYPE_7_12 = 1, TYPE_9_16 = 2
 | 
						|
    };
 | 
						|
    enum
 | 
						|
    {
 | 
						|
        THRESHOLD = 10000, NONMAX_SUPPRESSION=10001, FAST_N=10002
 | 
						|
    };
 | 
						|
 | 
						|
 | 
						|
    CV_WRAP static Ptr<FastFeatureDetector> create( int threshold=10,
 | 
						|
                                                    bool nonmaxSuppression=true,
 | 
						|
                                                    FastFeatureDetector::DetectorType type=FastFeatureDetector::TYPE_9_16 );
 | 
						|
 | 
						|
    CV_WRAP virtual void setThreshold(int threshold) = 0;
 | 
						|
    CV_WRAP virtual int getThreshold() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setNonmaxSuppression(bool f) = 0;
 | 
						|
    CV_WRAP virtual bool getNonmaxSuppression() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setType(FastFeatureDetector::DetectorType type) = 0;
 | 
						|
    CV_WRAP virtual FastFeatureDetector::DetectorType getType() const = 0;
 | 
						|
    CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
 | 
						|
};
 | 
						|
 | 
						|
/** @overload */
 | 
						|
CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
 | 
						|
                      int threshold, bool nonmaxSuppression=true );
 | 
						|
 | 
						|
/** @brief Detects corners using the FAST algorithm
 | 
						|
 | 
						|
@param image grayscale image where keypoints (corners) are detected.
 | 
						|
@param keypoints keypoints detected on the image.
 | 
						|
@param threshold threshold on difference between intensity of the central pixel and pixels of a
 | 
						|
circle around this pixel.
 | 
						|
@param nonmaxSuppression if true, non-maximum suppression is applied to detected corners
 | 
						|
(keypoints).
 | 
						|
@param type one of the three neighborhoods as defined in the paper:
 | 
						|
FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12,
 | 
						|
FastFeatureDetector::TYPE_5_8
 | 
						|
 | 
						|
Detects corners using the FAST algorithm by @cite Rosten06 .
 | 
						|
 | 
						|
@note In Python API, types are given as cv.FAST_FEATURE_DETECTOR_TYPE_5_8,
 | 
						|
cv.FAST_FEATURE_DETECTOR_TYPE_7_12 and cv.FAST_FEATURE_DETECTOR_TYPE_9_16. For corner
 | 
						|
detection, use cv.FAST.detect() method.
 | 
						|
 */
 | 
						|
CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
 | 
						|
                      int threshold, bool nonmaxSuppression, FastFeatureDetector::DetectorType type );
 | 
						|
 | 
						|
//! @} features2d_main
 | 
						|
 | 
						|
//! @addtogroup features2d_main
 | 
						|
//! @{
 | 
						|
 | 
						|
/** @brief Wrapping class for feature detection using the AGAST method. :
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W AgastFeatureDetector : public Feature2D
 | 
						|
{
 | 
						|
public:
 | 
						|
    enum DetectorType
 | 
						|
    {
 | 
						|
        AGAST_5_8 = 0, AGAST_7_12d = 1, AGAST_7_12s = 2, OAST_9_16 = 3,
 | 
						|
    };
 | 
						|
 | 
						|
    enum
 | 
						|
    {
 | 
						|
        THRESHOLD = 10000, NONMAX_SUPPRESSION = 10001,
 | 
						|
    };
 | 
						|
 | 
						|
    CV_WRAP static Ptr<AgastFeatureDetector> create( int threshold=10,
 | 
						|
                                                     bool nonmaxSuppression=true,
 | 
						|
                                                     AgastFeatureDetector::DetectorType type = AgastFeatureDetector::OAST_9_16);
 | 
						|
 | 
						|
    CV_WRAP virtual void setThreshold(int threshold) = 0;
 | 
						|
    CV_WRAP virtual int getThreshold() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setNonmaxSuppression(bool f) = 0;
 | 
						|
    CV_WRAP virtual bool getNonmaxSuppression() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setType(AgastFeatureDetector::DetectorType type) = 0;
 | 
						|
    CV_WRAP virtual AgastFeatureDetector::DetectorType getType() const = 0;
 | 
						|
    CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
 | 
						|
};
 | 
						|
 | 
						|
/** @overload */
 | 
						|
CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
 | 
						|
                      int threshold, bool nonmaxSuppression=true );
 | 
						|
 | 
						|
/** @brief Detects corners using the AGAST algorithm
 | 
						|
 | 
						|
@param image grayscale image where keypoints (corners) are detected.
 | 
						|
@param keypoints keypoints detected on the image.
 | 
						|
@param threshold threshold on difference between intensity of the central pixel and pixels of a
 | 
						|
circle around this pixel.
 | 
						|
@param nonmaxSuppression if true, non-maximum suppression is applied to detected corners
 | 
						|
(keypoints).
 | 
						|
@param type one of the four neighborhoods as defined in the paper:
 | 
						|
AgastFeatureDetector::AGAST_5_8, AgastFeatureDetector::AGAST_7_12d,
 | 
						|
AgastFeatureDetector::AGAST_7_12s, AgastFeatureDetector::OAST_9_16
 | 
						|
 | 
						|
For non-Intel platforms, there is a tree optimised variant of AGAST with same numerical results.
 | 
						|
The 32-bit binary tree tables were generated automatically from original code using perl script.
 | 
						|
The perl script and examples of tree generation are placed in features2d/doc folder.
 | 
						|
Detects corners using the AGAST algorithm by @cite mair2010_agast .
 | 
						|
 | 
						|
 */
 | 
						|
CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
 | 
						|
                      int threshold, bool nonmaxSuppression, AgastFeatureDetector::DetectorType type );
 | 
						|
 | 
						|
/** @brief Wrapping class for feature detection using the goodFeaturesToTrack function. :
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W GFTTDetector : public Feature2D
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP static Ptr<GFTTDetector> create( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,
 | 
						|
                                             int blockSize=3, bool useHarrisDetector=false, double k=0.04 );
 | 
						|
    CV_WRAP static Ptr<GFTTDetector> create( int maxCorners, double qualityLevel, double minDistance,
 | 
						|
                                             int blockSize, int gradiantSize, bool useHarrisDetector=false, double k=0.04 );
 | 
						|
    CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0;
 | 
						|
    CV_WRAP virtual int getMaxFeatures() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setQualityLevel(double qlevel) = 0;
 | 
						|
    CV_WRAP virtual double getQualityLevel() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setMinDistance(double minDistance) = 0;
 | 
						|
    CV_WRAP virtual double getMinDistance() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setBlockSize(int blockSize) = 0;
 | 
						|
    CV_WRAP virtual int getBlockSize() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setHarrisDetector(bool val) = 0;
 | 
						|
    CV_WRAP virtual bool getHarrisDetector() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setK(double k) = 0;
 | 
						|
    CV_WRAP virtual double getK() const = 0;
 | 
						|
    CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Class for extracting blobs from an image. :
 | 
						|
 | 
						|
The class implements a simple algorithm for extracting blobs from an image:
 | 
						|
 | 
						|
1.  Convert the source image to binary images by applying thresholding with several thresholds from
 | 
						|
    minThreshold (inclusive) to maxThreshold (exclusive) with distance thresholdStep between
 | 
						|
    neighboring thresholds.
 | 
						|
2.  Extract connected components from every binary image by findContours and calculate their
 | 
						|
    centers.
 | 
						|
3.  Group centers from several binary images by their coordinates. Close centers form one group that
 | 
						|
    corresponds to one blob, which is controlled by the minDistBetweenBlobs parameter.
 | 
						|
4.  From the groups, estimate final centers of blobs and their radiuses and return as locations and
 | 
						|
    sizes of keypoints.
 | 
						|
 | 
						|
This class performs several filtrations of returned blobs. You should set filterBy\* to true/false
 | 
						|
to turn on/off corresponding filtration. Available filtrations:
 | 
						|
 | 
						|
-   **By color**. This filter compares the intensity of a binary image at the center of a blob to
 | 
						|
blobColor. If they differ, the blob is filtered out. Use blobColor = 0 to extract dark blobs
 | 
						|
and blobColor = 255 to extract light blobs.
 | 
						|
-   **By area**. Extracted blobs have an area between minArea (inclusive) and maxArea (exclusive).
 | 
						|
-   **By circularity**. Extracted blobs have circularity
 | 
						|
(\f$\frac{4*\pi*Area}{perimeter * perimeter}\f$) between minCircularity (inclusive) and
 | 
						|
maxCircularity (exclusive).
 | 
						|
-   **By ratio of the minimum inertia to maximum inertia**. Extracted blobs have this ratio
 | 
						|
between minInertiaRatio (inclusive) and maxInertiaRatio (exclusive).
 | 
						|
-   **By convexity**. Extracted blobs have convexity (area / area of blob convex hull) between
 | 
						|
minConvexity (inclusive) and maxConvexity (exclusive).
 | 
						|
 | 
						|
Default values of parameters are tuned to extract dark circular blobs.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W SimpleBlobDetector : public Feature2D
 | 
						|
{
 | 
						|
public:
 | 
						|
  struct CV_EXPORTS_W_SIMPLE Params
 | 
						|
  {
 | 
						|
      CV_WRAP Params();
 | 
						|
      CV_PROP_RW float thresholdStep;
 | 
						|
      CV_PROP_RW float minThreshold;
 | 
						|
      CV_PROP_RW float maxThreshold;
 | 
						|
      CV_PROP_RW size_t minRepeatability;
 | 
						|
      CV_PROP_RW float minDistBetweenBlobs;
 | 
						|
 | 
						|
      CV_PROP_RW bool filterByColor;
 | 
						|
      CV_PROP_RW uchar blobColor;
 | 
						|
 | 
						|
      CV_PROP_RW bool filterByArea;
 | 
						|
      CV_PROP_RW float minArea, maxArea;
 | 
						|
 | 
						|
      CV_PROP_RW bool filterByCircularity;
 | 
						|
      CV_PROP_RW float minCircularity, maxCircularity;
 | 
						|
 | 
						|
      CV_PROP_RW bool filterByInertia;
 | 
						|
      CV_PROP_RW float minInertiaRatio, maxInertiaRatio;
 | 
						|
 | 
						|
      CV_PROP_RW bool filterByConvexity;
 | 
						|
      CV_PROP_RW float minConvexity, maxConvexity;
 | 
						|
 | 
						|
      void read( const FileNode& fn );
 | 
						|
      void write( FileStorage& fs ) const;
 | 
						|
  };
 | 
						|
 | 
						|
  CV_WRAP static Ptr<SimpleBlobDetector>
 | 
						|
    create(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params());
 | 
						|
  CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
 | 
						|
};
 | 
						|
 | 
						|
//! @} features2d_main
 | 
						|
 | 
						|
//! @addtogroup features2d_main
 | 
						|
//! @{
 | 
						|
 | 
						|
/** @brief Class implementing the KAZE keypoint detector and descriptor extractor, described in @cite ABD12 .
 | 
						|
 | 
						|
@note AKAZE descriptor can only be used with KAZE or AKAZE keypoints .. [ABD12] KAZE Features. Pablo
 | 
						|
F. Alcantarilla, Adrien Bartoli and Andrew J. Davison. In European Conference on Computer Vision
 | 
						|
(ECCV), Fiorenze, Italy, October 2012.
 | 
						|
*/
 | 
						|
class CV_EXPORTS_W KAZE : public Feature2D
 | 
						|
{
 | 
						|
public:
 | 
						|
    enum DiffusivityType
 | 
						|
    {
 | 
						|
        DIFF_PM_G1 = 0,
 | 
						|
        DIFF_PM_G2 = 1,
 | 
						|
        DIFF_WEICKERT = 2,
 | 
						|
        DIFF_CHARBONNIER = 3
 | 
						|
    };
 | 
						|
 | 
						|
    /** @brief The KAZE constructor
 | 
						|
 | 
						|
    @param extended Set to enable extraction of extended (128-byte) descriptor.
 | 
						|
    @param upright Set to enable use of upright descriptors (non rotation-invariant).
 | 
						|
    @param threshold Detector response threshold to accept point
 | 
						|
    @param nOctaves Maximum octave evolution of the image
 | 
						|
    @param nOctaveLayers Default number of sublevels per scale level
 | 
						|
    @param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
 | 
						|
    DIFF_CHARBONNIER
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<KAZE> create(bool extended=false, bool upright=false,
 | 
						|
                                    float threshold = 0.001f,
 | 
						|
                                    int nOctaves = 4, int nOctaveLayers = 4,
 | 
						|
                                    KAZE::DiffusivityType diffusivity = KAZE::DIFF_PM_G2);
 | 
						|
 | 
						|
    CV_WRAP virtual void setExtended(bool extended) = 0;
 | 
						|
    CV_WRAP virtual bool getExtended() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setUpright(bool upright) = 0;
 | 
						|
    CV_WRAP virtual bool getUpright() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setThreshold(double threshold) = 0;
 | 
						|
    CV_WRAP virtual double getThreshold() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setNOctaves(int octaves) = 0;
 | 
						|
    CV_WRAP virtual int getNOctaves() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0;
 | 
						|
    CV_WRAP virtual int getNOctaveLayers() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setDiffusivity(KAZE::DiffusivityType diff) = 0;
 | 
						|
    CV_WRAP virtual KAZE::DiffusivityType getDiffusivity() const = 0;
 | 
						|
    CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Class implementing the AKAZE keypoint detector and descriptor extractor, described in @cite ANB13.
 | 
						|
 | 
						|
@details AKAZE descriptors can only be used with KAZE or AKAZE keypoints. This class is thread-safe.
 | 
						|
 | 
						|
@note When you need descriptors use Feature2D::detectAndCompute, which
 | 
						|
provides better performance. When using Feature2D::detect followed by
 | 
						|
Feature2D::compute scale space pyramid is computed twice.
 | 
						|
 | 
						|
@note AKAZE implements T-API. When image is passed as UMat some parts of the algorithm
 | 
						|
will use OpenCL.
 | 
						|
 | 
						|
@note [ANB13] Fast Explicit Diffusion for Accelerated Features in Nonlinear
 | 
						|
Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien Bartoli. In
 | 
						|
British Machine Vision Conference (BMVC), Bristol, UK, September 2013.
 | 
						|
 | 
						|
*/
 | 
						|
class CV_EXPORTS_W AKAZE : public Feature2D
 | 
						|
{
 | 
						|
public:
 | 
						|
    // AKAZE descriptor type
 | 
						|
    enum DescriptorType
 | 
						|
    {
 | 
						|
        DESCRIPTOR_KAZE_UPRIGHT = 2, ///< Upright descriptors, not invariant to rotation
 | 
						|
        DESCRIPTOR_KAZE = 3,
 | 
						|
        DESCRIPTOR_MLDB_UPRIGHT = 4, ///< Upright descriptors, not invariant to rotation
 | 
						|
        DESCRIPTOR_MLDB = 5
 | 
						|
    };
 | 
						|
 | 
						|
    /** @brief The AKAZE constructor
 | 
						|
 | 
						|
    @param descriptor_type Type of the extracted descriptor: DESCRIPTOR_KAZE,
 | 
						|
    DESCRIPTOR_KAZE_UPRIGHT, DESCRIPTOR_MLDB or DESCRIPTOR_MLDB_UPRIGHT.
 | 
						|
    @param descriptor_size Size of the descriptor in bits. 0 -\> Full size
 | 
						|
    @param descriptor_channels Number of channels in the descriptor (1, 2, 3)
 | 
						|
    @param threshold Detector response threshold to accept point
 | 
						|
    @param nOctaves Maximum octave evolution of the image
 | 
						|
    @param nOctaveLayers Default number of sublevels per scale level
 | 
						|
    @param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
 | 
						|
    DIFF_CHARBONNIER
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<AKAZE> create(AKAZE::DescriptorType descriptor_type = AKAZE::DESCRIPTOR_MLDB,
 | 
						|
                                     int descriptor_size = 0, int descriptor_channels = 3,
 | 
						|
                                     float threshold = 0.001f, int nOctaves = 4,
 | 
						|
                                     int nOctaveLayers = 4, KAZE::DiffusivityType diffusivity = KAZE::DIFF_PM_G2);
 | 
						|
 | 
						|
    CV_WRAP virtual void setDescriptorType(AKAZE::DescriptorType dtype) = 0;
 | 
						|
    CV_WRAP virtual AKAZE::DescriptorType getDescriptorType() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setDescriptorSize(int dsize) = 0;
 | 
						|
    CV_WRAP virtual int getDescriptorSize() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setDescriptorChannels(int dch) = 0;
 | 
						|
    CV_WRAP virtual int getDescriptorChannels() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setThreshold(double threshold) = 0;
 | 
						|
    CV_WRAP virtual double getThreshold() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setNOctaves(int octaves) = 0;
 | 
						|
    CV_WRAP virtual int getNOctaves() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0;
 | 
						|
    CV_WRAP virtual int getNOctaveLayers() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void setDiffusivity(KAZE::DiffusivityType diff) = 0;
 | 
						|
    CV_WRAP virtual KAZE::DiffusivityType getDiffusivity() const = 0;
 | 
						|
    CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
 | 
						|
};
 | 
						|
 | 
						|
//! @} features2d_main
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                      Distance                                          *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
template<typename T>
 | 
						|
struct CV_EXPORTS Accumulator
 | 
						|
{
 | 
						|
    typedef T Type;
 | 
						|
};
 | 
						|
 | 
						|
template<> struct Accumulator<unsigned char>  { typedef float Type; };
 | 
						|
template<> struct Accumulator<unsigned short> { typedef float Type; };
 | 
						|
template<> struct Accumulator<char>   { typedef float Type; };
 | 
						|
template<> struct Accumulator<short>  { typedef float Type; };
 | 
						|
 | 
						|
/*
 | 
						|
 * Squared Euclidean distance functor
 | 
						|
 */
 | 
						|
template<class T>
 | 
						|
struct CV_EXPORTS SL2
 | 
						|
{
 | 
						|
    static const NormTypes normType = NORM_L2SQR;
 | 
						|
    typedef T ValueType;
 | 
						|
    typedef typename Accumulator<T>::Type ResultType;
 | 
						|
 | 
						|
    ResultType operator()( const T* a, const T* b, int size ) const
 | 
						|
    {
 | 
						|
        return normL2Sqr<ValueType, ResultType>(a, b, size);
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Euclidean distance functor
 | 
						|
 */
 | 
						|
template<class T>
 | 
						|
struct L2
 | 
						|
{
 | 
						|
    static const NormTypes normType = NORM_L2;
 | 
						|
    typedef T ValueType;
 | 
						|
    typedef typename Accumulator<T>::Type ResultType;
 | 
						|
 | 
						|
    ResultType operator()( const T* a, const T* b, int size ) const
 | 
						|
    {
 | 
						|
        return (ResultType)std::sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size));
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Manhattan distance (city block distance) functor
 | 
						|
 */
 | 
						|
template<class T>
 | 
						|
struct L1
 | 
						|
{
 | 
						|
    static const NormTypes normType = NORM_L1;
 | 
						|
    typedef T ValueType;
 | 
						|
    typedef typename Accumulator<T>::Type ResultType;
 | 
						|
 | 
						|
    ResultType operator()( const T* a, const T* b, int size ) const
 | 
						|
    {
 | 
						|
        return normL1<ValueType, ResultType>(a, b, size);
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                  DescriptorMatcher                                     *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
//! @addtogroup features2d_match
 | 
						|
//! @{
 | 
						|
 | 
						|
/** @brief Abstract base class for matching keypoint descriptors.
 | 
						|
 | 
						|
It has two groups of match methods: for matching descriptors of an image with another image or with
 | 
						|
an image set.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W DescriptorMatcher : public Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
   enum MatcherType
 | 
						|
    {
 | 
						|
        FLANNBASED            = 1,
 | 
						|
        BRUTEFORCE            = 2,
 | 
						|
        BRUTEFORCE_L1         = 3,
 | 
						|
        BRUTEFORCE_HAMMING    = 4,
 | 
						|
        BRUTEFORCE_HAMMINGLUT = 5,
 | 
						|
        BRUTEFORCE_SL2        = 6
 | 
						|
    };
 | 
						|
 | 
						|
    virtual ~DescriptorMatcher();
 | 
						|
 | 
						|
    /** @brief Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor
 | 
						|
    collection.
 | 
						|
 | 
						|
    If the collection is not empty, the new descriptors are added to existing train descriptors.
 | 
						|
 | 
						|
    @param descriptors Descriptors to add. Each descriptors[i] is a set of descriptors from the same
 | 
						|
    train image.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual void add( InputArrayOfArrays descriptors );
 | 
						|
 | 
						|
    /** @brief Returns a constant link to the train descriptor collection trainDescCollection .
 | 
						|
     */
 | 
						|
    CV_WRAP const std::vector<Mat>& getTrainDescriptors() const;
 | 
						|
 | 
						|
    /** @brief Clears the train descriptor collections.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual void clear() CV_OVERRIDE;
 | 
						|
 | 
						|
    /** @brief Returns true if there are no train descriptors in the both collections.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual bool empty() const CV_OVERRIDE;
 | 
						|
 | 
						|
    /** @brief Returns true if the descriptor matcher supports masking permissible matches.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual bool isMaskSupported() const = 0;
 | 
						|
 | 
						|
    /** @brief Trains a descriptor matcher
 | 
						|
 | 
						|
    Trains a descriptor matcher (for example, the flann index). In all methods to match, the method
 | 
						|
    train() is run every time before matching. Some descriptor matchers (for example, BruteForceMatcher)
 | 
						|
    have an empty implementation of this method. Other matchers really train their inner structures (for
 | 
						|
    example, FlannBasedMatcher trains flann::Index ).
 | 
						|
     */
 | 
						|
    CV_WRAP virtual void train();
 | 
						|
 | 
						|
    /** @brief Finds the best match for each descriptor from a query set.
 | 
						|
 | 
						|
    @param queryDescriptors Query set of descriptors.
 | 
						|
    @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
 | 
						|
    collection stored in the class object.
 | 
						|
    @param matches Matches. If a query descriptor is masked out in mask , no match is added for this
 | 
						|
    descriptor. So, matches size may be smaller than the query descriptors count.
 | 
						|
    @param mask Mask specifying permissible matches between an input query and train matrices of
 | 
						|
    descriptors.
 | 
						|
 | 
						|
    In the first variant of this method, the train descriptors are passed as an input argument. In the
 | 
						|
    second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
 | 
						|
    used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
 | 
						|
    matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
 | 
						|
    mask.at\<uchar\>(i,j) is non-zero.
 | 
						|
     */
 | 
						|
    CV_WRAP void match( InputArray queryDescriptors, InputArray trainDescriptors,
 | 
						|
                CV_OUT std::vector<DMatch>& matches, InputArray mask=noArray() ) const;
 | 
						|
 | 
						|
    /** @brief Finds the k best matches for each descriptor from a query set.
 | 
						|
 | 
						|
    @param queryDescriptors Query set of descriptors.
 | 
						|
    @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
 | 
						|
    collection stored in the class object.
 | 
						|
    @param mask Mask specifying permissible matches between an input query and train matrices of
 | 
						|
    descriptors.
 | 
						|
    @param matches Matches. Each matches[i] is k or less matches for the same query descriptor.
 | 
						|
    @param k Count of best matches found per each query descriptor or less if a query descriptor has
 | 
						|
    less than k possible matches in total.
 | 
						|
    @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
 | 
						|
    false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
 | 
						|
    the matches vector does not contain matches for fully masked-out query descriptors.
 | 
						|
 | 
						|
    These extended variants of DescriptorMatcher::match methods find several best matches for each query
 | 
						|
    descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
 | 
						|
    for the details about query and train descriptors.
 | 
						|
     */
 | 
						|
    CV_WRAP void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors,
 | 
						|
                   CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
 | 
						|
                   InputArray mask=noArray(), bool compactResult=false ) const;
 | 
						|
 | 
						|
    /** @brief For each query descriptor, finds the training descriptors not farther than the specified distance.
 | 
						|
 | 
						|
    @param queryDescriptors Query set of descriptors.
 | 
						|
    @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
 | 
						|
    collection stored in the class object.
 | 
						|
    @param matches Found matches.
 | 
						|
    @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
 | 
						|
    false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
 | 
						|
    the matches vector does not contain matches for fully masked-out query descriptors.
 | 
						|
    @param maxDistance Threshold for the distance between matched descriptors. Distance means here
 | 
						|
    metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
 | 
						|
    in Pixels)!
 | 
						|
    @param mask Mask specifying permissible matches between an input query and train matrices of
 | 
						|
    descriptors.
 | 
						|
 | 
						|
    For each query descriptor, the methods find such training descriptors that the distance between the
 | 
						|
    query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
 | 
						|
    returned in the distance increasing order.
 | 
						|
     */
 | 
						|
    CV_WRAP void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors,
 | 
						|
                      CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
 | 
						|
                      InputArray mask=noArray(), bool compactResult=false ) const;
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param queryDescriptors Query set of descriptors.
 | 
						|
    @param matches Matches. If a query descriptor is masked out in mask , no match is added for this
 | 
						|
    descriptor. So, matches size may be smaller than the query descriptors count.
 | 
						|
    @param masks Set of masks. Each masks[i] specifies permissible matches between the input query
 | 
						|
    descriptors and stored train descriptors from the i-th image trainDescCollection[i].
 | 
						|
    */
 | 
						|
    CV_WRAP void match( InputArray queryDescriptors, CV_OUT std::vector<DMatch>& matches,
 | 
						|
                        InputArrayOfArrays masks=noArray() );
 | 
						|
    /** @overload
 | 
						|
    @param queryDescriptors Query set of descriptors.
 | 
						|
    @param matches Matches. Each matches[i] is k or less matches for the same query descriptor.
 | 
						|
    @param k Count of best matches found per each query descriptor or less if a query descriptor has
 | 
						|
    less than k possible matches in total.
 | 
						|
    @param masks Set of masks. Each masks[i] specifies permissible matches between the input query
 | 
						|
    descriptors and stored train descriptors from the i-th image trainDescCollection[i].
 | 
						|
    @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
 | 
						|
    false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
 | 
						|
    the matches vector does not contain matches for fully masked-out query descriptors.
 | 
						|
    */
 | 
						|
    CV_WRAP void knnMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
 | 
						|
                           InputArrayOfArrays masks=noArray(), bool compactResult=false );
 | 
						|
    /** @overload
 | 
						|
    @param queryDescriptors Query set of descriptors.
 | 
						|
    @param matches Found matches.
 | 
						|
    @param maxDistance Threshold for the distance between matched descriptors. Distance means here
 | 
						|
    metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
 | 
						|
    in Pixels)!
 | 
						|
    @param masks Set of masks. Each masks[i] specifies permissible matches between the input query
 | 
						|
    descriptors and stored train descriptors from the i-th image trainDescCollection[i].
 | 
						|
    @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
 | 
						|
    false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
 | 
						|
    the matches vector does not contain matches for fully masked-out query descriptors.
 | 
						|
    */
 | 
						|
    CV_WRAP void radiusMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
 | 
						|
                      InputArrayOfArrays masks=noArray(), bool compactResult=false );
 | 
						|
 | 
						|
 | 
						|
    CV_WRAP void write( const String& fileName ) const
 | 
						|
    {
 | 
						|
        FileStorage fs(fileName, FileStorage::WRITE);
 | 
						|
        write(fs);
 | 
						|
    }
 | 
						|
 | 
						|
    CV_WRAP void read( const String& fileName )
 | 
						|
    {
 | 
						|
        FileStorage fs(fileName, FileStorage::READ);
 | 
						|
        read(fs.root());
 | 
						|
    }
 | 
						|
    // Reads matcher object from a file node
 | 
						|
    // see corresponding cv::Algorithm method
 | 
						|
    CV_WRAP virtual void read( const FileNode& ) CV_OVERRIDE;
 | 
						|
    // Writes matcher object to a file storage
 | 
						|
    virtual void write( FileStorage& ) const CV_OVERRIDE;
 | 
						|
 | 
						|
    /** @brief Clones the matcher.
 | 
						|
 | 
						|
    @param emptyTrainData If emptyTrainData is false, the method creates a deep copy of the object,
 | 
						|
    that is, copies both parameters and train data. If emptyTrainData is true, the method creates an
 | 
						|
    object copy with the current parameters but with empty train data.
 | 
						|
     */
 | 
						|
    CV_WRAP CV_NODISCARD_STD virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
 | 
						|
 | 
						|
    /** @brief Creates a descriptor matcher of a given type with the default parameters (using default
 | 
						|
    constructor).
 | 
						|
 | 
						|
    @param descriptorMatcherType Descriptor matcher type. Now the following matcher types are
 | 
						|
    supported:
 | 
						|
    -   `BruteForce` (it uses L2 )
 | 
						|
    -   `BruteForce-L1`
 | 
						|
    -   `BruteForce-Hamming`
 | 
						|
    -   `BruteForce-Hamming(2)`
 | 
						|
    -   `FlannBased`
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<DescriptorMatcher> create( const String& descriptorMatcherType );
 | 
						|
 | 
						|
    CV_WRAP static Ptr<DescriptorMatcher> create( const DescriptorMatcher::MatcherType& matcherType );
 | 
						|
 | 
						|
 | 
						|
    // see corresponding cv::Algorithm method
 | 
						|
    CV_WRAP inline void write(const Ptr<FileStorage>& fs, const String& name = String()) const { Algorithm::write(fs, name); }
 | 
						|
 | 
						|
protected:
 | 
						|
    /**
 | 
						|
     * Class to work with descriptors from several images as with one merged matrix.
 | 
						|
     * It is used e.g. in FlannBasedMatcher.
 | 
						|
     */
 | 
						|
    class CV_EXPORTS DescriptorCollection
 | 
						|
    {
 | 
						|
    public:
 | 
						|
        DescriptorCollection();
 | 
						|
        DescriptorCollection( const DescriptorCollection& collection );
 | 
						|
        virtual ~DescriptorCollection();
 | 
						|
 | 
						|
        // Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here.
 | 
						|
        void set( const std::vector<Mat>& descriptors );
 | 
						|
        virtual void clear();
 | 
						|
 | 
						|
        const Mat& getDescriptors() const;
 | 
						|
        const Mat getDescriptor( int imgIdx, int localDescIdx ) const;
 | 
						|
        const Mat getDescriptor( int globalDescIdx ) const;
 | 
						|
        void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const;
 | 
						|
 | 
						|
        int size() const;
 | 
						|
 | 
						|
    protected:
 | 
						|
        Mat mergedDescriptors;
 | 
						|
        std::vector<int> startIdxs;
 | 
						|
    };
 | 
						|
 | 
						|
    //! In fact the matching is implemented only by the following two methods. These methods suppose
 | 
						|
    //! that the class object has been trained already. Public match methods call these methods
 | 
						|
    //! after calling train().
 | 
						|
    virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
 | 
						|
        InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0;
 | 
						|
    virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
 | 
						|
        InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0;
 | 
						|
 | 
						|
    static bool isPossibleMatch( InputArray mask, int queryIdx, int trainIdx );
 | 
						|
    static bool isMaskedOut( InputArrayOfArrays masks, int queryIdx );
 | 
						|
 | 
						|
    CV_NODISCARD_STD static Mat clone_op( Mat m ) { return m.clone(); }
 | 
						|
    void checkMasks( InputArrayOfArrays masks, int queryDescriptorsCount ) const;
 | 
						|
 | 
						|
    //! Collection of descriptors from train images.
 | 
						|
    std::vector<Mat> trainDescCollection;
 | 
						|
    std::vector<UMat> utrainDescCollection;
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Brute-force descriptor matcher.
 | 
						|
 | 
						|
For each descriptor in the first set, this matcher finds the closest descriptor in the second set
 | 
						|
by trying each one. This descriptor matcher supports masking permissible matches of descriptor
 | 
						|
sets.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W BFMatcher : public DescriptorMatcher
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** @brief Brute-force matcher constructor (obsolete). Please use BFMatcher.create()
 | 
						|
     *
 | 
						|
     *
 | 
						|
    */
 | 
						|
    CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false );
 | 
						|
 | 
						|
    virtual ~BFMatcher() {}
 | 
						|
 | 
						|
    virtual bool isMaskSupported() const CV_OVERRIDE { return true; }
 | 
						|
 | 
						|
    /** @brief Brute-force matcher create method.
 | 
						|
    @param normType One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are
 | 
						|
    preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
 | 
						|
    BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor
 | 
						|
    description).
 | 
						|
    @param crossCheck If it is false, this is will be default BFMatcher behaviour when it finds the k
 | 
						|
    nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with
 | 
						|
    k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the
 | 
						|
    matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent
 | 
						|
    pairs. Such technique usually produces best results with minimal number of outliers when there are
 | 
						|
    enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<BFMatcher> create( int normType=NORM_L2, bool crossCheck=false ) ;
 | 
						|
 | 
						|
    CV_NODISCARD_STD virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const CV_OVERRIDE;
 | 
						|
protected:
 | 
						|
    virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
 | 
						|
        InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE;
 | 
						|
    virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
 | 
						|
        InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE;
 | 
						|
 | 
						|
    int normType;
 | 
						|
    bool crossCheck;
 | 
						|
};
 | 
						|
 | 
						|
#if defined(HAVE_OPENCV_FLANN) || defined(CV_DOXYGEN)
 | 
						|
 | 
						|
/** @brief Flann-based descriptor matcher.
 | 
						|
 | 
						|
This matcher trains cv::flann::Index on a train descriptor collection and calls its nearest search
 | 
						|
methods to find the best matches. So, this matcher may be faster when matching a large train
 | 
						|
collection than the brute force matcher. FlannBasedMatcher does not support masking permissible
 | 
						|
matches of descriptor sets because flann::Index does not support this. :
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=makePtr<flann::KDTreeIndexParams>(),
 | 
						|
                       const Ptr<flann::SearchParams>& searchParams=makePtr<flann::SearchParams>() );
 | 
						|
 | 
						|
    virtual void add( InputArrayOfArrays descriptors ) CV_OVERRIDE;
 | 
						|
    virtual void clear() CV_OVERRIDE;
 | 
						|
 | 
						|
    // Reads matcher object from a file node
 | 
						|
    virtual void read( const FileNode& ) CV_OVERRIDE;
 | 
						|
    // Writes matcher object to a file storage
 | 
						|
    virtual void write( FileStorage& ) const CV_OVERRIDE;
 | 
						|
 | 
						|
    virtual void train() CV_OVERRIDE;
 | 
						|
    virtual bool isMaskSupported() const CV_OVERRIDE;
 | 
						|
 | 
						|
    CV_WRAP static Ptr<FlannBasedMatcher> create();
 | 
						|
 | 
						|
    CV_NODISCARD_STD virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const CV_OVERRIDE;
 | 
						|
protected:
 | 
						|
    static void convertToDMatches( const DescriptorCollection& descriptors,
 | 
						|
                                   const Mat& indices, const Mat& distances,
 | 
						|
                                   std::vector<std::vector<DMatch> >& matches );
 | 
						|
 | 
						|
    virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
 | 
						|
        InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE;
 | 
						|
    virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
 | 
						|
        InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE;
 | 
						|
 | 
						|
    Ptr<flann::IndexParams> indexParams;
 | 
						|
    Ptr<flann::SearchParams> searchParams;
 | 
						|
    Ptr<flann::Index> flannIndex;
 | 
						|
 | 
						|
    DescriptorCollection mergedDescriptors;
 | 
						|
    int addedDescCount;
 | 
						|
};
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
//! @} features2d_match
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                   Drawing functions                                    *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
//! @addtogroup features2d_draw
 | 
						|
//! @{
 | 
						|
 | 
						|
enum struct DrawMatchesFlags
 | 
						|
{
 | 
						|
  DEFAULT = 0, //!< Output image matrix will be created (Mat::create),
 | 
						|
               //!< i.e. existing memory of output image may be reused.
 | 
						|
               //!< Two source image, matches and single keypoints will be drawn.
 | 
						|
               //!< For each keypoint only the center point will be drawn (without
 | 
						|
               //!< the circle around keypoint with keypoint size and orientation).
 | 
						|
  DRAW_OVER_OUTIMG = 1, //!< Output image matrix will not be created (Mat::create).
 | 
						|
                        //!< Matches will be drawn on existing content of output image.
 | 
						|
  NOT_DRAW_SINGLE_POINTS = 2, //!< Single keypoints will not be drawn.
 | 
						|
  DRAW_RICH_KEYPOINTS = 4 //!< For each keypoint the circle around keypoint with keypoint size and
 | 
						|
                          //!< orientation will be drawn.
 | 
						|
};
 | 
						|
CV_ENUM_FLAGS(DrawMatchesFlags)
 | 
						|
 | 
						|
/** @brief Draws keypoints.
 | 
						|
 | 
						|
@param image Source image.
 | 
						|
@param keypoints Keypoints from the source image.
 | 
						|
@param outImage Output image. Its content depends on the flags value defining what is drawn in the
 | 
						|
output image. See possible flags bit values below.
 | 
						|
@param color Color of keypoints.
 | 
						|
@param flags Flags setting drawing features. Possible flags bit values are defined by
 | 
						|
DrawMatchesFlags. See details above in drawMatches .
 | 
						|
 | 
						|
@note
 | 
						|
For Python API, flags are modified as cv.DRAW_MATCHES_FLAGS_DEFAULT,
 | 
						|
cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, cv.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG,
 | 
						|
cv.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS
 | 
						|
 */
 | 
						|
CV_EXPORTS_W void drawKeypoints( InputArray image, const std::vector<KeyPoint>& keypoints, InputOutputArray outImage,
 | 
						|
                               const Scalar& color=Scalar::all(-1), DrawMatchesFlags flags=DrawMatchesFlags::DEFAULT );
 | 
						|
 | 
						|
/** @brief Draws the found matches of keypoints from two images.
 | 
						|
 | 
						|
@param img1 First source image.
 | 
						|
@param keypoints1 Keypoints from the first source image.
 | 
						|
@param img2 Second source image.
 | 
						|
@param keypoints2 Keypoints from the second source image.
 | 
						|
@param matches1to2 Matches from the first image to the second one, which means that keypoints1[i]
 | 
						|
has a corresponding point in keypoints2[matches[i]] .
 | 
						|
@param outImg Output image. Its content depends on the flags value defining what is drawn in the
 | 
						|
output image. See possible flags bit values below.
 | 
						|
@param matchColor Color of matches (lines and connected keypoints). If matchColor==Scalar::all(-1)
 | 
						|
, the color is generated randomly.
 | 
						|
@param singlePointColor Color of single keypoints (circles), which means that keypoints do not
 | 
						|
have the matches. If singlePointColor==Scalar::all(-1) , the color is generated randomly.
 | 
						|
@param matchesMask Mask determining which matches are drawn. If the mask is empty, all matches are
 | 
						|
drawn.
 | 
						|
@param flags Flags setting drawing features. Possible flags bit values are defined by
 | 
						|
DrawMatchesFlags.
 | 
						|
 | 
						|
This function draws matches of keypoints from two images in the output image. Match is a line
 | 
						|
connecting two keypoints (circles). See cv::DrawMatchesFlags.
 | 
						|
 */
 | 
						|
CV_EXPORTS_W void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
 | 
						|
                             InputArray img2, const std::vector<KeyPoint>& keypoints2,
 | 
						|
                             const std::vector<DMatch>& matches1to2, InputOutputArray outImg,
 | 
						|
                             const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
 | 
						|
                             const std::vector<char>& matchesMask=std::vector<char>(), DrawMatchesFlags flags=DrawMatchesFlags::DEFAULT );
 | 
						|
 | 
						|
/** @overload */
 | 
						|
CV_EXPORTS_W void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
 | 
						|
                             InputArray img2, const std::vector<KeyPoint>& keypoints2,
 | 
						|
                             const std::vector<DMatch>& matches1to2, InputOutputArray outImg,
 | 
						|
                             const int matchesThickness, const Scalar& matchColor=Scalar::all(-1),
 | 
						|
                             const Scalar& singlePointColor=Scalar::all(-1), const std::vector<char>& matchesMask=std::vector<char>(),
 | 
						|
                             DrawMatchesFlags flags=DrawMatchesFlags::DEFAULT );
 | 
						|
 | 
						|
CV_EXPORTS_AS(drawMatchesKnn) void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
 | 
						|
                             InputArray img2, const std::vector<KeyPoint>& keypoints2,
 | 
						|
                             const std::vector<std::vector<DMatch> >& matches1to2, InputOutputArray outImg,
 | 
						|
                             const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
 | 
						|
                             const std::vector<std::vector<char> >& matchesMask=std::vector<std::vector<char> >(), DrawMatchesFlags flags=DrawMatchesFlags::DEFAULT );
 | 
						|
 | 
						|
//! @} features2d_draw
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*   Functions to evaluate the feature detectors and [generic] descriptor extractors      *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2,
 | 
						|
                                         std::vector<KeyPoint>* keypoints1, std::vector<KeyPoint>* keypoints2,
 | 
						|
                                         float& repeatability, int& correspCount,
 | 
						|
                                         const Ptr<FeatureDetector>& fdetector=Ptr<FeatureDetector>() );
 | 
						|
 | 
						|
CV_EXPORTS void computeRecallPrecisionCurve( const std::vector<std::vector<DMatch> >& matches1to2,
 | 
						|
                                             const std::vector<std::vector<uchar> >& correctMatches1to2Mask,
 | 
						|
                                             std::vector<Point2f>& recallPrecisionCurve );
 | 
						|
 | 
						|
CV_EXPORTS float getRecall( const std::vector<Point2f>& recallPrecisionCurve, float l_precision );
 | 
						|
CV_EXPORTS int getNearestPoint( const std::vector<Point2f>& recallPrecisionCurve, float l_precision );
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                     Bag of visual words                                *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
//! @addtogroup features2d_category
 | 
						|
//! @{
 | 
						|
 | 
						|
/** @brief Abstract base class for training the *bag of visual words* vocabulary from a set of descriptors.
 | 
						|
 | 
						|
For details, see, for example, *Visual Categorization with Bags of Keypoints* by Gabriella Csurka,
 | 
						|
Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cedric Bray, 2004. :
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W BOWTrainer
 | 
						|
{
 | 
						|
public:
 | 
						|
    BOWTrainer();
 | 
						|
    virtual ~BOWTrainer();
 | 
						|
 | 
						|
    /** @brief Adds descriptors to a training set.
 | 
						|
 | 
						|
    @param descriptors Descriptors to add to a training set. Each row of the descriptors matrix is a
 | 
						|
    descriptor.
 | 
						|
 | 
						|
    The training set is clustered using clustermethod to construct the vocabulary.
 | 
						|
     */
 | 
						|
    CV_WRAP void add( const Mat& descriptors );
 | 
						|
 | 
						|
    /** @brief Returns a training set of descriptors.
 | 
						|
    */
 | 
						|
    CV_WRAP const std::vector<Mat>& getDescriptors() const;
 | 
						|
 | 
						|
    /** @brief Returns the count of all descriptors stored in the training set.
 | 
						|
    */
 | 
						|
    CV_WRAP int descriptorsCount() const;
 | 
						|
 | 
						|
    CV_WRAP virtual void clear();
 | 
						|
 | 
						|
    /** @overload */
 | 
						|
    CV_WRAP virtual Mat cluster() const = 0;
 | 
						|
 | 
						|
    /** @brief Clusters train descriptors.
 | 
						|
 | 
						|
    @param descriptors Descriptors to cluster. Each row of the descriptors matrix is a descriptor.
 | 
						|
    Descriptors are not added to the inner train descriptor set.
 | 
						|
 | 
						|
    The vocabulary consists of cluster centers. So, this method returns the vocabulary. In the first
 | 
						|
    variant of the method, train descriptors stored in the object are clustered. In the second variant,
 | 
						|
    input descriptors are clustered.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual Mat cluster( const Mat& descriptors ) const = 0;
 | 
						|
 | 
						|
protected:
 | 
						|
    std::vector<Mat> descriptors;
 | 
						|
    int size;
 | 
						|
};
 | 
						|
 | 
						|
/** @brief kmeans -based class to train visual vocabulary using the *bag of visual words* approach. :
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W BOWKMeansTrainer : public BOWTrainer
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** @brief The constructor.
 | 
						|
 | 
						|
    @see cv::kmeans
 | 
						|
    */
 | 
						|
    CV_WRAP BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(),
 | 
						|
                      int attempts=3, int flags=KMEANS_PP_CENTERS );
 | 
						|
    virtual ~BOWKMeansTrainer();
 | 
						|
 | 
						|
    // Returns trained vocabulary (i.e. cluster centers).
 | 
						|
    CV_WRAP virtual Mat cluster() const CV_OVERRIDE;
 | 
						|
    CV_WRAP virtual Mat cluster( const Mat& descriptors ) const CV_OVERRIDE;
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
    int clusterCount;
 | 
						|
    TermCriteria termcrit;
 | 
						|
    int attempts;
 | 
						|
    int flags;
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Class to compute an image descriptor using the *bag of visual words*.
 | 
						|
 | 
						|
Such a computation consists of the following steps:
 | 
						|
 | 
						|
1.  Compute descriptors for a given image and its keypoints set.
 | 
						|
2.  Find the nearest visual words from the vocabulary for each keypoint descriptor.
 | 
						|
3.  Compute the bag-of-words image descriptor as is a normalized histogram of vocabulary words
 | 
						|
encountered in the image. The i-th bin of the histogram is a frequency of i-th word of the
 | 
						|
vocabulary in the given image.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W BOWImgDescriptorExtractor
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** @brief The constructor.
 | 
						|
 | 
						|
    @param dextractor Descriptor extractor that is used to compute descriptors for an input image and
 | 
						|
    its keypoints.
 | 
						|
    @param dmatcher Descriptor matcher that is used to find the nearest word of the trained vocabulary
 | 
						|
    for each keypoint descriptor of the image.
 | 
						|
     */
 | 
						|
    CV_WRAP BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor,
 | 
						|
                               const Ptr<DescriptorMatcher>& dmatcher );
 | 
						|
    /** @overload */
 | 
						|
    BOWImgDescriptorExtractor( const Ptr<DescriptorMatcher>& dmatcher );
 | 
						|
    virtual ~BOWImgDescriptorExtractor();
 | 
						|
 | 
						|
    /** @brief Sets a visual vocabulary.
 | 
						|
 | 
						|
    @param vocabulary Vocabulary (can be trained using the inheritor of BOWTrainer ). Each row of the
 | 
						|
    vocabulary is a visual word (cluster center).
 | 
						|
     */
 | 
						|
    CV_WRAP void setVocabulary( const Mat& vocabulary );
 | 
						|
 | 
						|
    /** @brief Returns the set vocabulary.
 | 
						|
    */
 | 
						|
    CV_WRAP const Mat& getVocabulary() const;
 | 
						|
 | 
						|
    /** @brief Computes an image descriptor using the set visual vocabulary.
 | 
						|
 | 
						|
    @param image Image, for which the descriptor is computed.
 | 
						|
    @param keypoints Keypoints detected in the input image.
 | 
						|
    @param imgDescriptor Computed output image descriptor.
 | 
						|
    @param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that
 | 
						|
    pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary)
 | 
						|
    returned if it is non-zero.
 | 
						|
    @param descriptors Descriptors of the image keypoints that are returned if they are non-zero.
 | 
						|
     */
 | 
						|
    void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray imgDescriptor,
 | 
						|
                  std::vector<std::vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 );
 | 
						|
    /** @overload
 | 
						|
    @param keypointDescriptors Computed descriptors to match with vocabulary.
 | 
						|
    @param imgDescriptor Computed output image descriptor.
 | 
						|
    @param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that
 | 
						|
    pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary)
 | 
						|
    returned if it is non-zero.
 | 
						|
    */
 | 
						|
    void compute( InputArray keypointDescriptors, OutputArray imgDescriptor,
 | 
						|
                  std::vector<std::vector<int> >* pointIdxsOfClusters=0 );
 | 
						|
    // compute() is not constant because DescriptorMatcher::match is not constant
 | 
						|
 | 
						|
    CV_WRAP_AS(compute) void compute2( const Mat& image, std::vector<KeyPoint>& keypoints, CV_OUT Mat& imgDescriptor )
 | 
						|
    { compute(image,keypoints,imgDescriptor); }
 | 
						|
 | 
						|
    /** @brief Returns an image descriptor size if the vocabulary is set. Otherwise, it returns 0.
 | 
						|
    */
 | 
						|
    CV_WRAP int descriptorSize() const;
 | 
						|
 | 
						|
    /** @brief Returns an image descriptor type.
 | 
						|
     */
 | 
						|
    CV_WRAP int descriptorType() const;
 | 
						|
 | 
						|
protected:
 | 
						|
    Mat vocabulary;
 | 
						|
    Ptr<DescriptorExtractor> dextractor;
 | 
						|
    Ptr<DescriptorMatcher> dmatcher;
 | 
						|
};
 | 
						|
 | 
						|
//! @} features2d_category
 | 
						|
 | 
						|
//! @} features2d
 | 
						|
 | 
						|
} /* namespace cv */
 | 
						|
 | 
						|
#endif
 |