You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			847 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
			
		
		
	
	
			847 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
/***********************************************************************
 | 
						|
 * Software License Agreement (BSD License)
 | 
						|
 *
 | 
						|
 * Copyright 2008-2011  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 | 
						|
 * Copyright 2008-2011  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 | 
						|
 *
 | 
						|
 * THE BSD LICENSE
 | 
						|
 *
 | 
						|
 * Redistribution and use in source and binary forms, with or without
 | 
						|
 * modification, are permitted provided that the following conditions
 | 
						|
 * are met:
 | 
						|
 *
 | 
						|
 * 1. Redistributions of source code must retain the above copyright
 | 
						|
 *    notice, this list of conditions and the following disclaimer.
 | 
						|
 * 2. Redistributions in binary form must reproduce the above copyright
 | 
						|
 *    notice, this list of conditions and the following disclaimer in the
 | 
						|
 *    documentation and/or other materials provided with the distribution.
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 | 
						|
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 | 
						|
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 | 
						|
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 | 
						|
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 | 
						|
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 | 
						|
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 *************************************************************************/
 | 
						|
 | 
						|
#ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
 | 
						|
#define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
 | 
						|
 | 
						|
//! @cond IGNORED
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <map>
 | 
						|
#include <limits>
 | 
						|
#include <cmath>
 | 
						|
 | 
						|
#include "general.h"
 | 
						|
#include "nn_index.h"
 | 
						|
#include "dist.h"
 | 
						|
#include "matrix.h"
 | 
						|
#include "result_set.h"
 | 
						|
#include "heap.h"
 | 
						|
#include "allocator.h"
 | 
						|
#include "random.h"
 | 
						|
#include "saving.h"
 | 
						|
 | 
						|
 | 
						|
namespace cvflann
 | 
						|
{
 | 
						|
 | 
						|
struct HierarchicalClusteringIndexParams : public IndexParams
 | 
						|
{
 | 
						|
    HierarchicalClusteringIndexParams(int branching = 32,
 | 
						|
                                      flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
 | 
						|
                                      int trees = 4, int leaf_size = 100)
 | 
						|
    {
 | 
						|
        (*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL;
 | 
						|
        // The branching factor used in the hierarchical clustering
 | 
						|
        (*this)["branching"] = branching;
 | 
						|
        // Algorithm used for picking the initial cluster centers
 | 
						|
        (*this)["centers_init"] = centers_init;
 | 
						|
        // number of parallel trees to build
 | 
						|
        (*this)["trees"] = trees;
 | 
						|
        // maximum leaf size
 | 
						|
        (*this)["leaf_size"] = leaf_size;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Hierarchical index
 | 
						|
 *
 | 
						|
 * Contains a tree constructed through a hierarchical clustering
 | 
						|
 * and other information for indexing a set of points for nearest-neighbour matching.
 | 
						|
 */
 | 
						|
template <typename Distance>
 | 
						|
class HierarchicalClusteringIndex : public NNIndex<Distance>
 | 
						|
{
 | 
						|
public:
 | 
						|
    typedef typename Distance::ElementType ElementType;
 | 
						|
    typedef typename Distance::ResultType DistanceType;
 | 
						|
 | 
						|
private:
 | 
						|
 | 
						|
 | 
						|
    typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&);
 | 
						|
 | 
						|
    /**
 | 
						|
     * The function used for choosing the cluster centers.
 | 
						|
     */
 | 
						|
    centersAlgFunction chooseCenters;
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     * Chooses the initial centers in the k-means clustering in a random manner.
 | 
						|
     *
 | 
						|
     * Params:
 | 
						|
     *     k = number of centers
 | 
						|
     *     vecs = the dataset of points
 | 
						|
     *     indices = indices in the dataset
 | 
						|
     *     indices_length = length of indices vector
 | 
						|
     *
 | 
						|
     */
 | 
						|
    void chooseCentersRandom(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
 | 
						|
    {
 | 
						|
        UniqueRandom r(indices_length);
 | 
						|
 | 
						|
        int index;
 | 
						|
        for (index=0; index<k; ++index) {
 | 
						|
            bool duplicate = true;
 | 
						|
            int rnd;
 | 
						|
            while (duplicate) {
 | 
						|
                duplicate = false;
 | 
						|
                rnd = r.next();
 | 
						|
                if (rnd<0) {
 | 
						|
                    centers_length = index;
 | 
						|
                    return;
 | 
						|
                }
 | 
						|
 | 
						|
                centers[index] = dsindices[rnd];
 | 
						|
 | 
						|
                for (int j=0; j<index; ++j) {
 | 
						|
                    DistanceType sq = distance(dataset[centers[index]], dataset[centers[j]], dataset.cols);
 | 
						|
                    if (sq<1e-16) {
 | 
						|
                        duplicate = true;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        centers_length = index;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     * Chooses the initial centers in the k-means using Gonzales' algorithm
 | 
						|
     * so that the centers are spaced apart from each other.
 | 
						|
     *
 | 
						|
     * Params:
 | 
						|
     *     k = number of centers
 | 
						|
     *     vecs = the dataset of points
 | 
						|
     *     indices = indices in the dataset
 | 
						|
     * Returns:
 | 
						|
     */
 | 
						|
    void chooseCentersGonzales(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
 | 
						|
    {
 | 
						|
        int n = indices_length;
 | 
						|
 | 
						|
        int rnd = rand_int(n);
 | 
						|
        CV_DbgAssert(rnd >=0 && rnd < n);
 | 
						|
 | 
						|
        centers[0] = dsindices[rnd];
 | 
						|
 | 
						|
        int index;
 | 
						|
        for (index=1; index<k; ++index) {
 | 
						|
 | 
						|
            int best_index = -1;
 | 
						|
            DistanceType best_val = 0;
 | 
						|
            for (int j=0; j<n; ++j) {
 | 
						|
                DistanceType dist = distance(dataset[centers[0]],dataset[dsindices[j]],dataset.cols);
 | 
						|
                for (int i=1; i<index; ++i) {
 | 
						|
                    DistanceType tmp_dist = distance(dataset[centers[i]],dataset[dsindices[j]],dataset.cols);
 | 
						|
                    if (tmp_dist<dist) {
 | 
						|
                        dist = tmp_dist;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                if (dist>best_val) {
 | 
						|
                    best_val = dist;
 | 
						|
                    best_index = j;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (best_index!=-1) {
 | 
						|
                centers[index] = dsindices[best_index];
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        centers_length = index;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     * Chooses the initial centers in the k-means using the algorithm
 | 
						|
     * proposed in the KMeans++ paper:
 | 
						|
     * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
 | 
						|
     *
 | 
						|
     * Implementation of this function was converted from the one provided in Arthur's code.
 | 
						|
     *
 | 
						|
     * Params:
 | 
						|
     *     k = number of centers
 | 
						|
     *     vecs = the dataset of points
 | 
						|
     *     indices = indices in the dataset
 | 
						|
     * Returns:
 | 
						|
     */
 | 
						|
    void chooseCentersKMeanspp(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
 | 
						|
    {
 | 
						|
        int n = indices_length;
 | 
						|
 | 
						|
        double currentPot = 0;
 | 
						|
        DistanceType* closestDistSq = new DistanceType[n];
 | 
						|
 | 
						|
        // Choose one random center and set the closestDistSq values
 | 
						|
        int index = rand_int(n);
 | 
						|
        CV_DbgAssert(index >=0 && index < n);
 | 
						|
        centers[0] = dsindices[index];
 | 
						|
 | 
						|
        // Computing distance^2 will have the advantage of even higher probability further to pick new centers
 | 
						|
        // far from previous centers (and this complies to "k-means++: the advantages of careful seeding" article)
 | 
						|
        for (int i = 0; i < n; i++) {
 | 
						|
            closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
 | 
						|
            closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
 | 
						|
            currentPot += closestDistSq[i];
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
        const int numLocalTries = 1;
 | 
						|
 | 
						|
        // Choose each center
 | 
						|
        int centerCount;
 | 
						|
        for (centerCount = 1; centerCount < k; centerCount++) {
 | 
						|
 | 
						|
            // Repeat several trials
 | 
						|
            double bestNewPot = -1;
 | 
						|
            int bestNewIndex = 0;
 | 
						|
            for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
 | 
						|
 | 
						|
                // Choose our center - have to be slightly careful to return a valid answer even accounting
 | 
						|
                // for possible rounding errors
 | 
						|
                double randVal = rand_double(currentPot);
 | 
						|
                for (index = 0; index < n-1; index++) {
 | 
						|
                    if (randVal <= closestDistSq[index]) break;
 | 
						|
                    else randVal -= closestDistSq[index];
 | 
						|
                }
 | 
						|
 | 
						|
                // Compute the new potential
 | 
						|
                double newPot = 0;
 | 
						|
                for (int i = 0; i < n; i++) {
 | 
						|
                    DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
 | 
						|
                    newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
 | 
						|
                }
 | 
						|
 | 
						|
                // Store the best result
 | 
						|
                if ((bestNewPot < 0)||(newPot < bestNewPot)) {
 | 
						|
                    bestNewPot = newPot;
 | 
						|
                    bestNewIndex = index;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            // Add the appropriate center
 | 
						|
            centers[centerCount] = dsindices[bestNewIndex];
 | 
						|
            currentPot = bestNewPot;
 | 
						|
            for (int i = 0; i < n; i++) {
 | 
						|
                DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols);
 | 
						|
                closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        centers_length = centerCount;
 | 
						|
 | 
						|
        delete[] closestDistSq;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     * Chooses the initial centers in a way inspired by Gonzales (by Pierre-Emmanuel Viel):
 | 
						|
     * select the first point of the list as a candidate, then parse the points list. If another
 | 
						|
     * point is further than current candidate from the other centers, test if it is a good center
 | 
						|
     * of a local aggregation. If it is, replace current candidate by this point. And so on...
 | 
						|
     *
 | 
						|
     * Used with KMeansIndex that computes centers coordinates by averaging positions of clusters points,
 | 
						|
     * this doesn't make a real difference with previous methods. But used with HierarchicalClusteringIndex
 | 
						|
     * class that pick centers among existing points instead of computing the barycenters, there is a real
 | 
						|
     * improvement.
 | 
						|
     *
 | 
						|
     * Params:
 | 
						|
     *     k = number of centers
 | 
						|
     *     vecs = the dataset of points
 | 
						|
     *     indices = indices in the dataset
 | 
						|
     * Returns:
 | 
						|
     */
 | 
						|
    void GroupWiseCenterChooser(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
 | 
						|
    {
 | 
						|
        const float kSpeedUpFactor = 1.3f;
 | 
						|
 | 
						|
        int n = indices_length;
 | 
						|
 | 
						|
        DistanceType* closestDistSq = new DistanceType[n];
 | 
						|
 | 
						|
        // Choose one random center and set the closestDistSq values
 | 
						|
        int index = rand_int(n);
 | 
						|
        CV_DbgAssert(index >=0 && index < n);
 | 
						|
        centers[0] = dsindices[index];
 | 
						|
 | 
						|
        for (int i = 0; i < n; i++) {
 | 
						|
            closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
        // Choose each center
 | 
						|
        int centerCount;
 | 
						|
        for (centerCount = 1; centerCount < k; centerCount++) {
 | 
						|
 | 
						|
            // Repeat several trials
 | 
						|
            double bestNewPot = -1;
 | 
						|
            int bestNewIndex = 0;
 | 
						|
            DistanceType furthest = 0;
 | 
						|
            for (index = 0; index < n; index++) {
 | 
						|
 | 
						|
                // We will test only the potential of the points further than current candidate
 | 
						|
                if( closestDistSq[index] > kSpeedUpFactor * (float)furthest ) {
 | 
						|
 | 
						|
                    // Compute the new potential
 | 
						|
                    double newPot = 0;
 | 
						|
                    for (int i = 0; i < n; i++) {
 | 
						|
                        newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols)
 | 
						|
                                            , closestDistSq[i] );
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Store the best result
 | 
						|
                    if ((bestNewPot < 0)||(newPot <= bestNewPot)) {
 | 
						|
                        bestNewPot = newPot;
 | 
						|
                        bestNewIndex = index;
 | 
						|
                        furthest = closestDistSq[index];
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            // Add the appropriate center
 | 
						|
            centers[centerCount] = dsindices[bestNewIndex];
 | 
						|
            for (int i = 0; i < n; i++) {
 | 
						|
                closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols)
 | 
						|
                                             , closestDistSq[i] );
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        centers_length = centerCount;
 | 
						|
 | 
						|
        delete[] closestDistSq;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     * Index constructor
 | 
						|
     *
 | 
						|
     * Params:
 | 
						|
     *          inputData = dataset with the input features
 | 
						|
     *          params = parameters passed to the hierarchical k-means algorithm
 | 
						|
     */
 | 
						|
    HierarchicalClusteringIndex(const Matrix<ElementType>& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(),
 | 
						|
                                Distance d = Distance())
 | 
						|
        : dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d)
 | 
						|
    {
 | 
						|
        memoryCounter = 0;
 | 
						|
 | 
						|
        size_ = dataset.rows;
 | 
						|
        veclen_ = dataset.cols;
 | 
						|
 | 
						|
        branching_ = get_param(params,"branching",32);
 | 
						|
        centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM);
 | 
						|
        trees_ = get_param(params,"trees",4);
 | 
						|
        leaf_size_ = get_param(params,"leaf_size",100);
 | 
						|
 | 
						|
        if (centers_init_==FLANN_CENTERS_RANDOM) {
 | 
						|
            chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom;
 | 
						|
        }
 | 
						|
        else if (centers_init_==FLANN_CENTERS_GONZALES) {
 | 
						|
            chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales;
 | 
						|
        }
 | 
						|
        else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
 | 
						|
            chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp;
 | 
						|
        }
 | 
						|
        else if (centers_init_==FLANN_CENTERS_GROUPWISE) {
 | 
						|
            chooseCenters = &HierarchicalClusteringIndex::GroupWiseCenterChooser;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            FLANN_THROW(cv::Error::StsError, "Unknown algorithm for choosing initial centers.");
 | 
						|
        }
 | 
						|
 | 
						|
        root = new NodePtr[trees_];
 | 
						|
        indices = new int*[trees_];
 | 
						|
 | 
						|
        for (int i=0; i<trees_; ++i) {
 | 
						|
            root[i] = NULL;
 | 
						|
            indices[i] = NULL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    HierarchicalClusteringIndex(const HierarchicalClusteringIndex&);
 | 
						|
    HierarchicalClusteringIndex& operator=(const HierarchicalClusteringIndex&);
 | 
						|
 | 
						|
    /**
 | 
						|
     * Index destructor.
 | 
						|
     *
 | 
						|
     * Release the memory used by the index.
 | 
						|
     */
 | 
						|
    virtual ~HierarchicalClusteringIndex()
 | 
						|
    {
 | 
						|
        if (root!=NULL) {
 | 
						|
            delete[] root;
 | 
						|
        }
 | 
						|
 | 
						|
        if (indices!=NULL) {
 | 
						|
            free_indices();
 | 
						|
            delete[] indices;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     *  Returns size of index.
 | 
						|
     */
 | 
						|
    size_t size() const CV_OVERRIDE
 | 
						|
    {
 | 
						|
        return size_;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns the length of an index feature.
 | 
						|
     */
 | 
						|
    size_t veclen() const CV_OVERRIDE
 | 
						|
    {
 | 
						|
        return veclen_;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     * Computes the inde memory usage
 | 
						|
     * Returns: memory used by the index
 | 
						|
     */
 | 
						|
    int usedMemory() const CV_OVERRIDE
 | 
						|
    {
 | 
						|
        return pool.usedMemory+pool.wastedMemory+memoryCounter;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Builds the index
 | 
						|
     */
 | 
						|
    void buildIndex() CV_OVERRIDE
 | 
						|
    {
 | 
						|
        if (branching_<2) {
 | 
						|
            FLANN_THROW(cv::Error::StsError, "Branching factor must be at least 2");
 | 
						|
        }
 | 
						|
 | 
						|
        free_indices();
 | 
						|
 | 
						|
        for (int i=0; i<trees_; ++i) {
 | 
						|
            indices[i] = new int[size_];
 | 
						|
            for (size_t j=0; j<size_; ++j) {
 | 
						|
                indices[i][j] = (int)j;
 | 
						|
            }
 | 
						|
            root[i] = pool.allocate<Node>();
 | 
						|
            computeClustering(root[i], indices[i], (int)size_, branching_,0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    flann_algorithm_t getType() const CV_OVERRIDE
 | 
						|
    {
 | 
						|
        return FLANN_INDEX_HIERARCHICAL;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    void saveIndex(FILE* stream) CV_OVERRIDE
 | 
						|
    {
 | 
						|
        save_value(stream, branching_);
 | 
						|
        save_value(stream, trees_);
 | 
						|
        save_value(stream, centers_init_);
 | 
						|
        save_value(stream, leaf_size_);
 | 
						|
        save_value(stream, memoryCounter);
 | 
						|
        for (int i=0; i<trees_; ++i) {
 | 
						|
            save_value(stream, *indices[i], size_);
 | 
						|
            save_tree(stream, root[i], i);
 | 
						|
        }
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    void loadIndex(FILE* stream) CV_OVERRIDE
 | 
						|
    {
 | 
						|
        if (root!=NULL) {
 | 
						|
            delete[] root;
 | 
						|
        }
 | 
						|
 | 
						|
        if (indices!=NULL) {
 | 
						|
            free_indices();
 | 
						|
            delete[] indices;
 | 
						|
        }
 | 
						|
 | 
						|
        load_value(stream, branching_);
 | 
						|
        load_value(stream, trees_);
 | 
						|
        load_value(stream, centers_init_);
 | 
						|
        load_value(stream, leaf_size_);
 | 
						|
        load_value(stream, memoryCounter);
 | 
						|
 | 
						|
        indices = new int*[trees_];
 | 
						|
        root = new NodePtr[trees_];
 | 
						|
        for (int i=0; i<trees_; ++i) {
 | 
						|
            indices[i] = new int[size_];
 | 
						|
            load_value(stream, *indices[i], size_);
 | 
						|
            load_tree(stream, root[i], i);
 | 
						|
        }
 | 
						|
 | 
						|
        params["algorithm"] = getType();
 | 
						|
        params["branching"] = branching_;
 | 
						|
        params["trees"] = trees_;
 | 
						|
        params["centers_init"] = centers_init_;
 | 
						|
        params["leaf_size"] = leaf_size_;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     * Find set of nearest neighbors to vec. Their indices are stored inside
 | 
						|
     * the result object.
 | 
						|
     *
 | 
						|
     * Params:
 | 
						|
     *     result = the result object in which the indices of the nearest-neighbors are stored
 | 
						|
     *     vec = the vector for which to search the nearest neighbors
 | 
						|
     *     searchParams = parameters that influence the search algorithm (checks)
 | 
						|
     */
 | 
						|
    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
 | 
						|
    {
 | 
						|
 | 
						|
        const int maxChecks = get_param(searchParams,"checks",32);
 | 
						|
        const bool explore_all_trees = get_param(searchParams,"explore_all_trees",false);
 | 
						|
 | 
						|
        // Priority queue storing intermediate branches in the best-bin-first search
 | 
						|
        const cv::Ptr<Heap<BranchSt>>& heap = Heap<BranchSt>::getPooledInstance(cv::utils::getThreadID(), (int)size_);
 | 
						|
 | 
						|
        std::vector<bool> checked(size_,false);
 | 
						|
        int checks = 0;
 | 
						|
        for (int i=0; i<trees_; ++i) {
 | 
						|
            findNN(root[i], result, vec, checks, maxChecks, heap, checked, explore_all_trees);
 | 
						|
            if (!explore_all_trees && (checks >= maxChecks) && result.full())
 | 
						|
                break;
 | 
						|
        }
 | 
						|
 | 
						|
        BranchSt branch;
 | 
						|
        while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
 | 
						|
            NodePtr node = branch.node;
 | 
						|
            findNN(node, result, vec, checks, maxChecks, heap, checked, false);
 | 
						|
        }
 | 
						|
 | 
						|
        CV_Assert(result.full());
 | 
						|
    }
 | 
						|
 | 
						|
    IndexParams getParameters() const CV_OVERRIDE
 | 
						|
    {
 | 
						|
        return params;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
private:
 | 
						|
 | 
						|
    /**
 | 
						|
     * Structure representing a node in the hierarchical k-means tree.
 | 
						|
     */
 | 
						|
    struct Node
 | 
						|
    {
 | 
						|
        /**
 | 
						|
         * The cluster center index
 | 
						|
         */
 | 
						|
        int pivot;
 | 
						|
        /**
 | 
						|
         * The cluster size (number of points in the cluster)
 | 
						|
         */
 | 
						|
        int size;
 | 
						|
        /**
 | 
						|
         * Child nodes (only for non-terminal nodes)
 | 
						|
         */
 | 
						|
        Node** childs;
 | 
						|
        /**
 | 
						|
         * Node points (only for terminal nodes)
 | 
						|
         */
 | 
						|
        int* indices;
 | 
						|
        /**
 | 
						|
         * Level
 | 
						|
         */
 | 
						|
        int level;
 | 
						|
    };
 | 
						|
    typedef Node* NodePtr;
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     * Alias definition for a nicer syntax.
 | 
						|
     */
 | 
						|
    typedef BranchStruct<NodePtr, DistanceType> BranchSt;
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    void save_tree(FILE* stream, NodePtr node, int num)
 | 
						|
    {
 | 
						|
        save_value(stream, *node);
 | 
						|
        if (node->childs==NULL) {
 | 
						|
            int indices_offset = (int)(node->indices - indices[num]);
 | 
						|
            save_value(stream, indices_offset);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            for(int i=0; i<branching_; ++i) {
 | 
						|
                save_tree(stream, node->childs[i], num);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    void load_tree(FILE* stream, NodePtr& node, int num)
 | 
						|
    {
 | 
						|
        node = pool.allocate<Node>();
 | 
						|
        load_value(stream, *node);
 | 
						|
        if (node->childs==NULL) {
 | 
						|
            int indices_offset;
 | 
						|
            load_value(stream, indices_offset);
 | 
						|
            node->indices = indices[num] + indices_offset;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            node->childs = pool.allocate<NodePtr>(branching_);
 | 
						|
            for(int i=0; i<branching_; ++i) {
 | 
						|
                load_tree(stream, node->childs[i], num);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     * Release the inner elements of indices[]
 | 
						|
     */
 | 
						|
    void free_indices()
 | 
						|
    {
 | 
						|
        if (indices!=NULL) {
 | 
						|
            for(int i=0; i<trees_; ++i) {
 | 
						|
                if (indices[i]!=NULL) {
 | 
						|
                    delete[] indices[i];
 | 
						|
                    indices[i] = NULL;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    void computeLabels(int* dsindices, int indices_length,  int* centers, int centers_length, int* labels, DistanceType& cost)
 | 
						|
    {
 | 
						|
        cost = 0;
 | 
						|
        for (int i=0; i<indices_length; ++i) {
 | 
						|
            ElementType* point = dataset[dsindices[i]];
 | 
						|
            DistanceType dist = distance(point, dataset[centers[0]], veclen_);
 | 
						|
            labels[i] = 0;
 | 
						|
            for (int j=1; j<centers_length; ++j) {
 | 
						|
                DistanceType new_dist = distance(point, dataset[centers[j]], veclen_);
 | 
						|
                if (dist>new_dist) {
 | 
						|
                    labels[i] = j;
 | 
						|
                    dist = new_dist;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            cost += dist;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * The method responsible with actually doing the recursive hierarchical
 | 
						|
     * clustering
 | 
						|
     *
 | 
						|
     * Params:
 | 
						|
     *     node = the node to cluster
 | 
						|
     *     indices = indices of the points belonging to the current node
 | 
						|
     *     branching = the branching factor to use in the clustering
 | 
						|
     *
 | 
						|
     * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
 | 
						|
     */
 | 
						|
    void computeClustering(NodePtr node, int* dsindices, int indices_length, int branching, int level)
 | 
						|
    {
 | 
						|
        node->size = indices_length;
 | 
						|
        node->level = level;
 | 
						|
 | 
						|
        if (indices_length < leaf_size_) { // leaf node
 | 
						|
            node->indices = dsindices;
 | 
						|
            std::sort(node->indices,node->indices+indices_length);
 | 
						|
            node->childs = NULL;
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        std::vector<int> centers(branching);
 | 
						|
        std::vector<int> labels(indices_length);
 | 
						|
 | 
						|
        int centers_length;
 | 
						|
        (this->*chooseCenters)(branching, dsindices, indices_length, ¢ers[0], centers_length);
 | 
						|
 | 
						|
        if (centers_length<branching) {
 | 
						|
            node->indices = dsindices;
 | 
						|
            std::sort(node->indices,node->indices+indices_length);
 | 
						|
            node->childs = NULL;
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
        //	assign points to clusters
 | 
						|
        DistanceType cost;
 | 
						|
        computeLabels(dsindices, indices_length, ¢ers[0], centers_length, &labels[0], cost);
 | 
						|
 | 
						|
        node->childs = pool.allocate<NodePtr>(branching);
 | 
						|
        int start = 0;
 | 
						|
        int end = start;
 | 
						|
        for (int i=0; i<branching; ++i) {
 | 
						|
            for (int j=0; j<indices_length; ++j) {
 | 
						|
                if (labels[j]==i) {
 | 
						|
                    std::swap(dsindices[j],dsindices[end]);
 | 
						|
                    std::swap(labels[j],labels[end]);
 | 
						|
                    end++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            node->childs[i] = pool.allocate<Node>();
 | 
						|
            node->childs[i]->pivot = centers[i];
 | 
						|
            node->childs[i]->indices = NULL;
 | 
						|
            computeClustering(node->childs[i],dsindices+start, end-start, branching, level+1);
 | 
						|
            start=end;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     * Performs one descent in the hierarchical k-means tree. The branches not
 | 
						|
     * visited are stored in a priority queue.
 | 
						|
     *
 | 
						|
     * Params:
 | 
						|
     *      node = node to explore
 | 
						|
     *      result = container for the k-nearest neighbors found
 | 
						|
     *      vec = query points
 | 
						|
     *      checks = how many points in the dataset have been checked so far
 | 
						|
     *      maxChecks = maximum dataset points to checks
 | 
						|
     */
 | 
						|
 | 
						|
 | 
						|
    void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
 | 
						|
                const cv::Ptr<Heap<BranchSt>>& heap, std::vector<bool>& checked, bool explore_all_trees = false)
 | 
						|
    {
 | 
						|
        if (node->childs==NULL) {
 | 
						|
            if (!explore_all_trees && (checks>=maxChecks) && result.full()) {
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            for (int i=0; i<node->size; ++i) {
 | 
						|
                int index = node->indices[i];
 | 
						|
                if (!checked[index]) {
 | 
						|
                    DistanceType dist = distance(dataset[index], vec, veclen_);
 | 
						|
                    result.addPoint(dist, index);
 | 
						|
                    checked[index] = true;
 | 
						|
                    ++checks;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            DistanceType* domain_distances = new DistanceType[branching_];
 | 
						|
            int best_index = 0;
 | 
						|
            domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_);
 | 
						|
            for (int i=1; i<branching_; ++i) {
 | 
						|
                domain_distances[i] = distance(vec, dataset[node->childs[i]->pivot], veclen_);
 | 
						|
                if (domain_distances[i]<domain_distances[best_index]) {
 | 
						|
                    best_index = i;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            for (int i=0; i<branching_; ++i) {
 | 
						|
                if (i!=best_index) {
 | 
						|
                    heap->insert(BranchSt(node->childs[i],domain_distances[i]));
 | 
						|
                }
 | 
						|
            }
 | 
						|
            delete[] domain_distances;
 | 
						|
            findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked, explore_all_trees);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
private:
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     * The dataset used by this index
 | 
						|
     */
 | 
						|
    const Matrix<ElementType> dataset;
 | 
						|
 | 
						|
    /**
 | 
						|
     * Parameters used by this index
 | 
						|
     */
 | 
						|
    IndexParams params;
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     * Number of features in the dataset.
 | 
						|
     */
 | 
						|
    size_t size_;
 | 
						|
 | 
						|
    /**
 | 
						|
     * Length of each feature.
 | 
						|
     */
 | 
						|
    size_t veclen_;
 | 
						|
 | 
						|
    /**
 | 
						|
     * The root node in the tree.
 | 
						|
     */
 | 
						|
    NodePtr* root;
 | 
						|
 | 
						|
    /**
 | 
						|
     *  Array of indices to vectors in the dataset.
 | 
						|
     */
 | 
						|
    int** indices;
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     * The distance
 | 
						|
     */
 | 
						|
    Distance distance;
 | 
						|
 | 
						|
    /**
 | 
						|
     * Pooled memory allocator.
 | 
						|
     *
 | 
						|
     * Using a pooled memory allocator is more efficient
 | 
						|
     * than allocating memory directly when there is a large
 | 
						|
     * number small of memory allocations.
 | 
						|
     */
 | 
						|
    PooledAllocator pool;
 | 
						|
 | 
						|
    /**
 | 
						|
     * Memory occupied by the index.
 | 
						|
     */
 | 
						|
    int memoryCounter;
 | 
						|
 | 
						|
    /** index parameters */
 | 
						|
    int branching_;
 | 
						|
    int trees_;
 | 
						|
    flann_centers_init_t centers_init_;
 | 
						|
    int leaf_size_;
 | 
						|
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
//! @endcond
 | 
						|
 | 
						|
#endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */
 |