You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			715 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
			
		
		
	
	
			715 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
// This file is part of OpenCV project.
 | 
						|
// It is subject to the license terms in the LICENSE file found in the top-level directory
 | 
						|
// of this distribution and at http://opencv.org/license.html.
 | 
						|
//
 | 
						|
// Copyright (C) 2019-2021 Intel Corporation
 | 
						|
 | 
						|
 | 
						|
#ifndef OPENCV_GAPI_INFER_HPP
 | 
						|
#define OPENCV_GAPI_INFER_HPP
 | 
						|
 | 
						|
// FIXME: Inference API is currently only available in full mode
 | 
						|
#if !defined(GAPI_STANDALONE)
 | 
						|
 | 
						|
#include <functional>
 | 
						|
#include <string>  // string
 | 
						|
#include <utility> // tuple
 | 
						|
#include <type_traits> // is_same, false_type
 | 
						|
 | 
						|
#include <opencv2/gapi/util/util.hpp> // all_satisfy
 | 
						|
#include <opencv2/gapi/util/any.hpp>  // any<>
 | 
						|
#include <opencv2/gapi/gkernel.hpp>   // GKernelType[M], GBackend
 | 
						|
#include <opencv2/gapi/garg.hpp>      // GArg
 | 
						|
#include <opencv2/gapi/gcommon.hpp>   // CompileArgTag
 | 
						|
#include <opencv2/gapi/gmetaarg.hpp>  // GMetaArg
 | 
						|
 | 
						|
namespace cv {
 | 
						|
 | 
						|
template<typename, typename> class GNetworkType;
 | 
						|
 | 
						|
namespace detail {
 | 
						|
 | 
						|
// Infer ///////////////////////////////////////////////////////////////////////
 | 
						|
template<typename T>
 | 
						|
struct accepted_infer_types {
 | 
						|
    static constexpr const auto value =
 | 
						|
            std::is_same<typename std::decay<T>::type, cv::GMat>::value
 | 
						|
         || std::is_same<typename std::decay<T>::type, cv::GFrame>::value;
 | 
						|
};
 | 
						|
 | 
						|
template<typename... Ts>
 | 
						|
using valid_infer_types = all_satisfy<accepted_infer_types, Ts...>;
 | 
						|
 | 
						|
// Infer2 //////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
template<typename, typename>
 | 
						|
struct valid_infer2_types;
 | 
						|
 | 
						|
// Terminal case 1 (50/50 success)
 | 
						|
template<typename T>
 | 
						|
struct valid_infer2_types< std::tuple<cv::GMat>, std::tuple<T> > {
 | 
						|
    // By default, Nets are limited to GMat argument types only
 | 
						|
    // for infer2, every GMat argument may translate to either
 | 
						|
    // GArray<GMat> or GArray<Rect>. GArray<> part is stripped
 | 
						|
    // already at this point.
 | 
						|
    static constexpr const auto value =
 | 
						|
            std::is_same<typename std::decay<T>::type, cv::GMat>::value
 | 
						|
         || std::is_same<typename std::decay<T>::type, cv::Rect>::value;
 | 
						|
};
 | 
						|
 | 
						|
// Terminal case 2 (100% failure)
 | 
						|
template<typename... Ts>
 | 
						|
struct valid_infer2_types< std::tuple<>, std::tuple<Ts...> >
 | 
						|
    : public std::false_type {
 | 
						|
};
 | 
						|
 | 
						|
// Terminal case 3 (100% failure)
 | 
						|
template<typename... Ns>
 | 
						|
struct valid_infer2_types< std::tuple<Ns...>, std::tuple<> >
 | 
						|
    : public std::false_type {
 | 
						|
};
 | 
						|
 | 
						|
// Recursion -- generic
 | 
						|
template<typename... Ns, typename T, typename...Ts>
 | 
						|
struct valid_infer2_types< std::tuple<cv::GMat,Ns...>, std::tuple<T,Ts...> > {
 | 
						|
    static constexpr const auto value =
 | 
						|
           valid_infer2_types< std::tuple<cv::GMat>, std::tuple<T> >::value
 | 
						|
        && valid_infer2_types< std::tuple<Ns...>, std::tuple<Ts...> >::value;
 | 
						|
};
 | 
						|
 | 
						|
// Struct stores network input/output names.
 | 
						|
// Used by infer<Generic>
 | 
						|
struct InOutInfo
 | 
						|
{
 | 
						|
    std::vector<std::string> in_names;
 | 
						|
    std::vector<std::string> out_names;
 | 
						|
};
 | 
						|
 | 
						|
template <typename OutT>
 | 
						|
class GInferOutputsTyped
 | 
						|
{
 | 
						|
public:
 | 
						|
    GInferOutputsTyped() = default;
 | 
						|
    GInferOutputsTyped(std::shared_ptr<cv::GCall> call)
 | 
						|
        : m_priv(std::make_shared<Priv>(std::move(call)))
 | 
						|
    {
 | 
						|
    }
 | 
						|
 | 
						|
    OutT at(const std::string& name)
 | 
						|
    {
 | 
						|
        auto it = m_priv->blobs.find(name);
 | 
						|
        if (it == m_priv->blobs.end()) {
 | 
						|
            // FIXME: Avoid modifying GKernel
 | 
						|
            auto shape = cv::detail::GTypeTraits<OutT>::shape;
 | 
						|
            m_priv->call->kernel().outShapes.push_back(shape);
 | 
						|
            m_priv->call->kernel().outCtors.emplace_back(cv::detail::GObtainCtor<OutT>::get());
 | 
						|
            auto out_idx = static_cast<int>(m_priv->blobs.size());
 | 
						|
            it = m_priv->blobs.emplace(name,
 | 
						|
                    cv::detail::Yield<OutT>::yield(*(m_priv->call), out_idx)).first;
 | 
						|
            m_priv->info->out_names.push_back(name);
 | 
						|
        }
 | 
						|
        return it->second;
 | 
						|
    }
 | 
						|
private:
 | 
						|
    struct Priv
 | 
						|
    {
 | 
						|
        Priv(std::shared_ptr<cv::GCall> c)
 | 
						|
            : call(std::move(c)), info(cv::util::any_cast<InOutInfo>(&call->params()))
 | 
						|
        {
 | 
						|
        }
 | 
						|
 | 
						|
        std::shared_ptr<cv::GCall> call;
 | 
						|
        InOutInfo* info = nullptr;
 | 
						|
        std::unordered_map<std::string, OutT> blobs;
 | 
						|
    };
 | 
						|
 | 
						|
    std::shared_ptr<Priv> m_priv;
 | 
						|
};
 | 
						|
 | 
						|
template <typename... Ts>
 | 
						|
class GInferInputsTyped
 | 
						|
{
 | 
						|
public:
 | 
						|
    GInferInputsTyped()
 | 
						|
        : m_priv(std::make_shared<Priv>())
 | 
						|
    {
 | 
						|
    }
 | 
						|
 | 
						|
    template <typename U>
 | 
						|
    GInferInputsTyped<Ts...>& setInput(const std::string& name, U in)
 | 
						|
    {
 | 
						|
        m_priv->blobs.emplace(std::piecewise_construct,
 | 
						|
                              std::forward_as_tuple(name),
 | 
						|
                              std::forward_as_tuple(in));
 | 
						|
        return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    using StorageT = cv::util::variant<Ts...>;
 | 
						|
    StorageT& operator[](const std::string& name) {
 | 
						|
        return m_priv->blobs[name];
 | 
						|
    }
 | 
						|
 | 
						|
    using Map = std::unordered_map<std::string, StorageT>;
 | 
						|
    const Map& getBlobs() const {
 | 
						|
        return m_priv->blobs;
 | 
						|
    }
 | 
						|
 | 
						|
private:
 | 
						|
    struct Priv
 | 
						|
    {
 | 
						|
        std::unordered_map<std::string, StorageT> blobs;
 | 
						|
    };
 | 
						|
 | 
						|
    std::shared_ptr<Priv> m_priv;
 | 
						|
};
 | 
						|
 | 
						|
template<typename InferT>
 | 
						|
std::shared_ptr<cv::GCall> makeCall(const std::string         &tag,
 | 
						|
                                    std::vector<cv::GArg>    &&args,
 | 
						|
                                    std::vector<std::string> &&names,
 | 
						|
                                    cv::GKinds               &&kinds) {
 | 
						|
    auto call = std::make_shared<cv::GCall>(GKernel{
 | 
						|
                InferT::id(),
 | 
						|
                tag,
 | 
						|
                InferT::getOutMeta,
 | 
						|
                {}, // outShape will be filled later
 | 
						|
                std::move(kinds),
 | 
						|
                {}, // outCtors will be filled later
 | 
						|
            });
 | 
						|
 | 
						|
    call->setArgs(std::move(args));
 | 
						|
    call->params() = cv::detail::InOutInfo{std::move(names), {}};
 | 
						|
 | 
						|
    return call;
 | 
						|
}
 | 
						|
 | 
						|
} // namespace detail
 | 
						|
 | 
						|
// TODO: maybe tuple_wrap_helper from util.hpp may help with this.
 | 
						|
// Multiple-return-value network definition (specialized base class)
 | 
						|
template<typename K, typename... R, typename... Args>
 | 
						|
class GNetworkType<K, std::function<std::tuple<R...>(Args...)> >
 | 
						|
{
 | 
						|
public:
 | 
						|
    using InArgs  = std::tuple<Args...>;
 | 
						|
    using OutArgs = std::tuple<R...>;
 | 
						|
 | 
						|
    using Result  = OutArgs;
 | 
						|
    using API     = std::function<Result(Args...)>;
 | 
						|
 | 
						|
    using ResultL = std::tuple< cv::GArray<R>... >;
 | 
						|
};
 | 
						|
 | 
						|
// Single-return-value network definition (specialized base class)
 | 
						|
template<typename K, typename R, typename... Args>
 | 
						|
class GNetworkType<K, std::function<R(Args...)> >
 | 
						|
{
 | 
						|
public:
 | 
						|
    using InArgs  = std::tuple<Args...>;
 | 
						|
    using OutArgs = std::tuple<R>;
 | 
						|
 | 
						|
    using Result  = R;
 | 
						|
    using API     = std::function<R(Args...)>;
 | 
						|
 | 
						|
    using ResultL = cv::GArray<R>;
 | 
						|
};
 | 
						|
 | 
						|
// InferAPI: Accepts either GMat or GFrame for very individual network's input
 | 
						|
template<class Net, class... Ts>
 | 
						|
struct InferAPI {
 | 
						|
    using type = typename std::enable_if
 | 
						|
        <    detail::valid_infer_types<Ts...>::value
 | 
						|
          && std::tuple_size<typename Net::InArgs>::value == sizeof...(Ts)
 | 
						|
        , std::function<typename Net::Result(Ts...)>
 | 
						|
        >::type;
 | 
						|
};
 | 
						|
 | 
						|
// InferAPIRoi: Accepts a rectangle and either GMat or GFrame
 | 
						|
template<class Net, class T>
 | 
						|
struct InferAPIRoi {
 | 
						|
    using type = typename std::enable_if
 | 
						|
        <    detail::valid_infer_types<T>::value
 | 
						|
          && std::tuple_size<typename Net::InArgs>::value == 1u
 | 
						|
          , std::function<typename Net::Result(cv::GOpaque<cv::Rect>, T)>
 | 
						|
        >::type;
 | 
						|
};
 | 
						|
 | 
						|
// InferAPIList: Accepts a list of rectangles and list of GMat/GFrames;
 | 
						|
// crops every input.
 | 
						|
template<class Net, class... Ts>
 | 
						|
struct InferAPIList {
 | 
						|
    using type = typename std::enable_if
 | 
						|
        <    detail::valid_infer_types<Ts...>::value
 | 
						|
          && std::tuple_size<typename Net::InArgs>::value == sizeof...(Ts)
 | 
						|
        , std::function<typename Net::ResultL(cv::GArray<cv::Rect>, Ts...)>
 | 
						|
        >::type;
 | 
						|
};
 | 
						|
 | 
						|
// APIList2 is also template to allow different calling options
 | 
						|
// (GArray<cv::Rect> vs GArray<cv::GMat> per input)
 | 
						|
template<class Net, typename T, class... Ts>
 | 
						|
struct InferAPIList2 {
 | 
						|
    using type = typename std::enable_if
 | 
						|
        < detail::valid_infer_types<T>::value &&
 | 
						|
          cv::detail::valid_infer2_types< typename Net::InArgs
 | 
						|
                                        , std::tuple<Ts...> >::value,
 | 
						|
          std::function<typename Net::ResultL(T, cv::GArray<Ts>...)>
 | 
						|
        >::type;
 | 
						|
};
 | 
						|
 | 
						|
// Base "Infer" kernel. Note - for whatever network, kernel ID
 | 
						|
// is always the same. Different inference calls are distinguished by
 | 
						|
// network _tag_ (an extra field in GCall)
 | 
						|
//
 | 
						|
// getOutMeta is a stub callback collected by G-API kernel subsystem
 | 
						|
// automatically. This is a rare case when this callback is defined by
 | 
						|
// a particular backend, not by a network itself.
 | 
						|
struct GInferBase {
 | 
						|
    static constexpr const char * id() {
 | 
						|
        return "org.opencv.dnn.infer";            // Universal stub
 | 
						|
    }
 | 
						|
    static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
 | 
						|
        return GMetaArgs{};                       // One more universal stub
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
// Base "InferROI" kernel.
 | 
						|
// All notes from "Infer" kernel apply here as well.
 | 
						|
struct GInferROIBase {
 | 
						|
    static constexpr const char * id() {
 | 
						|
        return "org.opencv.dnn.infer-roi";        // Universal stub
 | 
						|
    }
 | 
						|
    static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
 | 
						|
        return GMetaArgs{};                       // One more universal stub
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
// Base "Infer list" kernel.
 | 
						|
// All notes from "Infer" kernel apply here as well.
 | 
						|
struct GInferListBase {
 | 
						|
    static constexpr const char * id() {
 | 
						|
        return "org.opencv.dnn.infer-roi-list-1"; // Universal stub
 | 
						|
    }
 | 
						|
    static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
 | 
						|
        return GMetaArgs{};                       // One more universal stub
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
// Base "Infer list 2" kernel.
 | 
						|
// All notes from "Infer" kernel apply here as well.
 | 
						|
struct GInferList2Base {
 | 
						|
    static constexpr const char * id() {
 | 
						|
        return "org.opencv.dnn.infer-roi-list-2"; // Universal stub
 | 
						|
    }
 | 
						|
    static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
 | 
						|
        return GMetaArgs{};                       // One more universal stub
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
// A generic inference kernel. API (::on()) is fully defined by the Net
 | 
						|
// template parameter.
 | 
						|
// Acts as a regular kernel in graph (via KernelTypeMedium).
 | 
						|
template<typename Net, typename... Args>
 | 
						|
struct GInfer final
 | 
						|
    : public GInferBase
 | 
						|
    , public detail::KernelTypeMedium< GInfer<Net, Args...>
 | 
						|
                                     , typename InferAPI<Net, Args...>::type > {
 | 
						|
    using GInferBase::getOutMeta; // FIXME: name lookup conflict workaround?
 | 
						|
 | 
						|
    static constexpr const char* tag() { return Net::tag(); }
 | 
						|
};
 | 
						|
 | 
						|
// A specific roi-inference kernel. API (::on()) is fixed here and
 | 
						|
// verified against Net.
 | 
						|
template<typename Net, typename T>
 | 
						|
struct GInferROI final
 | 
						|
    : public GInferROIBase
 | 
						|
    , public detail::KernelTypeMedium< GInferROI<Net, T>
 | 
						|
                                     , typename InferAPIRoi<Net, T>::type > {
 | 
						|
    using GInferROIBase::getOutMeta; // FIXME: name lookup conflict workaround?
 | 
						|
 | 
						|
    static constexpr const char* tag() { return Net::tag(); }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// A generic roi-list inference kernel. API (::on()) is derived from
 | 
						|
// the Net template parameter (see more in infer<> overload).
 | 
						|
template<typename Net, typename... Args>
 | 
						|
struct GInferList final
 | 
						|
    : public GInferListBase
 | 
						|
    , public detail::KernelTypeMedium< GInferList<Net, Args...>
 | 
						|
                                     , typename InferAPIList<Net, Args...>::type > {
 | 
						|
    using GInferListBase::getOutMeta; // FIXME: name lookup conflict workaround?
 | 
						|
 | 
						|
    static constexpr const char* tag() { return Net::tag(); }
 | 
						|
};
 | 
						|
 | 
						|
// An even more generic roi-list inference kernel. API (::on()) is
 | 
						|
// derived from the Net template parameter (see more in infer<>
 | 
						|
// overload).
 | 
						|
// Takes an extra variadic template list to reflect how this network
 | 
						|
// was called (with Rects or GMats as array parameters)
 | 
						|
template<typename Net, typename T, typename... Args>
 | 
						|
struct GInferList2 final
 | 
						|
    : public GInferList2Base
 | 
						|
    , public detail::KernelTypeMedium< GInferList2<Net, T, Args...>
 | 
						|
                                     , typename InferAPIList2<Net, T, Args...>::type > {
 | 
						|
    using GInferList2Base::getOutMeta; // FIXME: name lookup conflict workaround?
 | 
						|
 | 
						|
    static constexpr const char* tag() { return Net::tag(); }
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * @brief G-API object used to collect network inputs
 | 
						|
 */
 | 
						|
using GInferInputs = cv::detail::GInferInputsTyped<cv::GMat, cv::GFrame>;
 | 
						|
 | 
						|
/**
 | 
						|
 * @brief G-API object used to collect the list of network inputs
 | 
						|
 */
 | 
						|
using GInferListInputs = cv::detail::GInferInputsTyped<cv::GArray<cv::GMat>, cv::GArray<cv::Rect>>;
 | 
						|
 | 
						|
/**
 | 
						|
 * @brief G-API object used to collect network outputs
 | 
						|
 */
 | 
						|
using GInferOutputs = cv::detail::GInferOutputsTyped<cv::GMat>;
 | 
						|
 | 
						|
/**
 | 
						|
 * @brief G-API object used to collect the list of network outputs
 | 
						|
 */
 | 
						|
using GInferListOutputs = cv::detail::GInferOutputsTyped<cv::GArray<cv::GMat>>;
 | 
						|
 | 
						|
namespace detail {
 | 
						|
void inline unpackBlobs(const cv::GInferInputs::Map& blobs,
 | 
						|
                        std::vector<cv::GArg>& args,
 | 
						|
                        std::vector<std::string>& names,
 | 
						|
                        cv::GKinds& kinds)
 | 
						|
{
 | 
						|
    for (auto&& p : blobs) {
 | 
						|
        names.emplace_back(p.first);
 | 
						|
        switch (p.second.index()) {
 | 
						|
            case cv::GInferInputs::StorageT::index_of<cv::GMat>():
 | 
						|
                args.emplace_back(cv::util::get<cv::GMat>(p.second));
 | 
						|
                kinds.emplace_back(cv::detail::OpaqueKind::CV_MAT);
 | 
						|
                break;
 | 
						|
            case cv::GInferInputs::StorageT::index_of<cv::GFrame>():
 | 
						|
                args.emplace_back(cv::util::get<cv::GFrame>(p.second));
 | 
						|
                kinds.emplace_back(cv::detail::OpaqueKind::CV_UNKNOWN);
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                GAPI_Assert(false);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
template <typename InferType>
 | 
						|
struct InferROITraits;
 | 
						|
 | 
						|
template <>
 | 
						|
struct InferROITraits<GInferROIBase>
 | 
						|
{
 | 
						|
    using outType = cv::GInferOutputs;
 | 
						|
    using inType  = cv::GOpaque<cv::Rect>;
 | 
						|
};
 | 
						|
 | 
						|
template <>
 | 
						|
struct InferROITraits<GInferListBase>
 | 
						|
{
 | 
						|
    using outType = cv::GInferListOutputs;
 | 
						|
    using inType  = cv::GArray<cv::Rect>;
 | 
						|
};
 | 
						|
 | 
						|
template<typename InferType>
 | 
						|
typename InferROITraits<InferType>::outType
 | 
						|
inferGenericROI(const std::string& tag,
 | 
						|
         const typename InferROITraits<InferType>::inType& in,
 | 
						|
         const cv::GInferInputs& inputs)
 | 
						|
{
 | 
						|
    std::vector<cv::GArg> args;
 | 
						|
    std::vector<std::string> names;
 | 
						|
    cv::GKinds kinds;
 | 
						|
 | 
						|
    args.emplace_back(in);
 | 
						|
    kinds.emplace_back(cv::detail::OpaqueKind::CV_RECT);
 | 
						|
 | 
						|
    unpackBlobs(inputs.getBlobs(), args, names, kinds);
 | 
						|
 | 
						|
    auto call = cv::detail::makeCall<InferType>(tag,
 | 
						|
                                                std::move(args),
 | 
						|
                                                std::move(names),
 | 
						|
                                                std::move(kinds));
 | 
						|
 | 
						|
    return {std::move(call)};
 | 
						|
}
 | 
						|
 | 
						|
} // namespace detail
 | 
						|
} // namespace cv
 | 
						|
 | 
						|
// FIXME: Probably the <API> signature makes a function/tuple/function round-trip
 | 
						|
#define G_API_NET(Class, API, Tag)                                      \
 | 
						|
    struct Class final: public cv::GNetworkType<Class, std::function API> { \
 | 
						|
        static constexpr const char * tag() { return Tag; }             \
 | 
						|
    }
 | 
						|
 | 
						|
namespace cv {
 | 
						|
namespace gapi {
 | 
						|
 | 
						|
/** @brief Calculates response for the specified network (template
 | 
						|
 *     parameter) for the specified region in the source image.
 | 
						|
 *     Currently expects a single-input network only.
 | 
						|
 *
 | 
						|
 * @tparam A network type defined with G_API_NET() macro.
 | 
						|
 * @param in input image where to take ROI from.
 | 
						|
 * @param roi an object describing the region of interest
 | 
						|
 *   in the source image. May be calculated in the same graph dynamically.
 | 
						|
 * @return an object of return type as defined in G_API_NET().
 | 
						|
 *   If a network has multiple return values (defined with a tuple), a tuple of
 | 
						|
 *   objects of appropriate type is returned.
 | 
						|
 * @sa  G_API_NET()
 | 
						|
 */
 | 
						|
template<typename Net, typename T>
 | 
						|
typename Net::Result infer(cv::GOpaque<cv::Rect> roi, T in) {
 | 
						|
    return GInferROI<Net, T>::on(roi, in);
 | 
						|
}
 | 
						|
 | 
						|
/** @brief Calculates responses for the specified network (template
 | 
						|
 *     parameter) for every region in the source image.
 | 
						|
 *
 | 
						|
 * @tparam A network type defined with G_API_NET() macro.
 | 
						|
 * @param roi a list of rectangles describing regions of interest
 | 
						|
 *   in the source image. Usually an output of object detector or tracker.
 | 
						|
 * @param args network's input parameters as specified in G_API_NET() macro.
 | 
						|
 *   NOTE: verified to work reliably with 1-input topologies only.
 | 
						|
 * @return a list of objects of return type as defined in G_API_NET().
 | 
						|
 *   If a network has multiple return values (defined with a tuple), a tuple of
 | 
						|
 *   GArray<> objects is returned with the appropriate types inside.
 | 
						|
 * @sa  G_API_NET()
 | 
						|
 */
 | 
						|
template<typename Net, typename... Args>
 | 
						|
typename Net::ResultL infer(cv::GArray<cv::Rect> roi, Args&&... args) {
 | 
						|
    return GInferList<Net, Args...>::on(roi, std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
/** @brief Calculates responses for the specified network (template
 | 
						|
 *     parameter) for every region in the source image, extended version.
 | 
						|
 *
 | 
						|
 * @tparam A network type defined with G_API_NET() macro.
 | 
						|
 * @param image A source image containing regions of interest
 | 
						|
 * @param args GArray<> objects of cv::Rect or cv::GMat, one per every
 | 
						|
 * network input:
 | 
						|
 * - If a cv::GArray<cv::Rect> is passed, the appropriate
 | 
						|
 *   regions are taken from `image` and preprocessed to this particular
 | 
						|
 *   network input;
 | 
						|
 * - If a cv::GArray<cv::GMat> is passed, the underlying data traited
 | 
						|
 *   as tensor (no automatic preprocessing happen).
 | 
						|
 * @return a list of objects of return type as defined in G_API_NET().
 | 
						|
 *   If a network has multiple return values (defined with a tuple), a tuple of
 | 
						|
 *   GArray<> objects is returned with the appropriate types inside.
 | 
						|
 * @sa  G_API_NET()
 | 
						|
 */
 | 
						|
 | 
						|
template<typename Net, typename T, typename... Args>
 | 
						|
typename Net::ResultL infer2(T image, cv::GArray<Args>... args) {
 | 
						|
    // FIXME: Declared as "2" because in the current form it steals
 | 
						|
    // overloads from the regular infer
 | 
						|
    return GInferList2<Net, T, Args...>::on(image, args...);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * @brief Calculates response for the specified network (template
 | 
						|
 *     parameter) given the input data.
 | 
						|
 *
 | 
						|
 * @tparam A network type defined with G_API_NET() macro.
 | 
						|
 * @param args network's input parameters as specified in G_API_NET() macro.
 | 
						|
 * @return an object of return type as defined in G_API_NET().
 | 
						|
 *   If a network has multiple return values (defined with a tuple), a tuple of
 | 
						|
 *   objects of appropriate type is returned.
 | 
						|
 * @sa  G_API_NET()
 | 
						|
 */
 | 
						|
template<typename Net, typename... Args>
 | 
						|
typename Net::Result infer(Args&&... args) {
 | 
						|
    return GInfer<Net, Args...>::on(std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * @brief Generic network type: input and output layers are configured dynamically at runtime
 | 
						|
 *
 | 
						|
 * Unlike the network types defined with G_API_NET macro, this one
 | 
						|
 * doesn't fix number of network inputs and outputs at the compilation stage
 | 
						|
 * thus providing user with an opportunity to program them in runtime.
 | 
						|
 */
 | 
						|
struct Generic { };
 | 
						|
 | 
						|
/**
 | 
						|
 * @brief Calculates response for generic network
 | 
						|
 *
 | 
						|
 * @param tag a network tag
 | 
						|
 * @param inputs networks's inputs
 | 
						|
 * @return a GInferOutputs
 | 
						|
 */
 | 
						|
template<typename T = Generic> cv::GInferOutputs
 | 
						|
infer(const std::string& tag, const cv::GInferInputs& inputs)
 | 
						|
{
 | 
						|
    std::vector<cv::GArg> args;
 | 
						|
    std::vector<std::string> names;
 | 
						|
    cv::GKinds kinds;
 | 
						|
 | 
						|
    cv::detail::unpackBlobs(inputs.getBlobs(), args, names, kinds);
 | 
						|
 | 
						|
    auto call = cv::detail::makeCall<GInferBase>(tag,
 | 
						|
                                                 std::move(args),
 | 
						|
                                                 std::move(names),
 | 
						|
                                                 std::move(kinds));
 | 
						|
 | 
						|
    return cv::GInferOutputs{std::move(call)};
 | 
						|
}
 | 
						|
 | 
						|
/** @brief Calculates response for the generic network
 | 
						|
 *     for the specified region in the source image.
 | 
						|
 *     Currently expects a single-input network only.
 | 
						|
 *
 | 
						|
 * @param tag a network tag
 | 
						|
 * @param roi a an object describing the region of interest
 | 
						|
 *   in the source image. May be calculated in the same graph dynamically.
 | 
						|
 * @param inputs networks's inputs
 | 
						|
 * @return a cv::GInferOutputs
 | 
						|
 */
 | 
						|
template<typename T = Generic> cv::GInferOutputs
 | 
						|
infer(const std::string& tag, const cv::GOpaque<cv::Rect>& roi, const cv::GInferInputs& inputs)
 | 
						|
{
 | 
						|
    return cv::detail::inferGenericROI<GInferROIBase>(tag, roi, inputs);
 | 
						|
}
 | 
						|
 | 
						|
/** @brief Calculates responses for the specified network
 | 
						|
 *     for every region in the source image.
 | 
						|
 *
 | 
						|
 * @param tag a network tag
 | 
						|
 * @param rois a list of rectangles describing regions of interest
 | 
						|
 *   in the source image. Usually an output of object detector or tracker.
 | 
						|
 * @param inputs networks's inputs
 | 
						|
 * @return a cv::GInferListOutputs
 | 
						|
 */
 | 
						|
template<typename T = Generic> cv::GInferListOutputs
 | 
						|
infer(const std::string& tag, const cv::GArray<cv::Rect>& rois, const cv::GInferInputs& inputs)
 | 
						|
{
 | 
						|
    return cv::detail::inferGenericROI<GInferListBase>(tag, rois, inputs);
 | 
						|
}
 | 
						|
 | 
						|
/** @brief Calculates responses for the specified network
 | 
						|
 *     for every region in the source image, extended version.
 | 
						|
 *
 | 
						|
 * @param tag a network tag
 | 
						|
 * @param in a source image containing regions of interest.
 | 
						|
 * @param inputs networks's inputs
 | 
						|
 * @return a cv::GInferListOutputs
 | 
						|
 */
 | 
						|
template<typename T = Generic, typename Input>
 | 
						|
typename std::enable_if<cv::detail::accepted_infer_types<Input>::value, cv::GInferListOutputs>::type
 | 
						|
infer2(const std::string& tag,
 | 
						|
       const Input& in,
 | 
						|
       const cv::GInferListInputs& inputs)
 | 
						|
{
 | 
						|
    std::vector<cv::GArg> args;
 | 
						|
    std::vector<std::string> names;
 | 
						|
    cv::GKinds kinds;
 | 
						|
 | 
						|
    args.emplace_back(in);
 | 
						|
    auto k = cv::detail::GOpaqueTraits<Input>::kind;
 | 
						|
    kinds.emplace_back(k);
 | 
						|
 | 
						|
    for (auto&& p : inputs.getBlobs()) {
 | 
						|
        names.emplace_back(p.first);
 | 
						|
        switch (p.second.index()) {
 | 
						|
            case cv::GInferListInputs::StorageT::index_of<cv::GArray<cv::GMat>>():
 | 
						|
                args.emplace_back(cv::util::get<cv::GArray<cv::GMat>>(p.second));
 | 
						|
                kinds.emplace_back(cv::detail::OpaqueKind::CV_MAT);
 | 
						|
                break;
 | 
						|
            case cv::GInferListInputs::StorageT::index_of<cv::GArray<cv::Rect>>():
 | 
						|
                args.emplace_back(cv::util::get<cv::GArray<cv::Rect>>(p.second));
 | 
						|
                kinds.emplace_back(cv::detail::OpaqueKind::CV_RECT);
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                GAPI_Assert(false);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    auto call = cv::detail::makeCall<GInferList2Base>(tag,
 | 
						|
                                                      std::move(args),
 | 
						|
                                                      std::move(names),
 | 
						|
                                                      std::move(kinds));
 | 
						|
 | 
						|
    return cv::GInferListOutputs{std::move(call)};
 | 
						|
}
 | 
						|
 | 
						|
} // namespace gapi
 | 
						|
} // namespace cv
 | 
						|
 | 
						|
#endif // GAPI_STANDALONE
 | 
						|
 | 
						|
namespace cv {
 | 
						|
namespace gapi {
 | 
						|
 | 
						|
// Note: the below code _is_ part of STANDALONE build,
 | 
						|
// just to make our compiler code compileable.
 | 
						|
 | 
						|
// A type-erased form of network parameters.
 | 
						|
// Similar to how a type-erased GKernel is represented and used.
 | 
						|
/// @private
 | 
						|
struct GAPI_EXPORTS_W_SIMPLE GNetParam {
 | 
						|
    std::string tag;     // FIXME: const?
 | 
						|
    GBackend backend;    // Specifies the execution model
 | 
						|
    util::any params;    // Backend-interpreted parameter structure
 | 
						|
};
 | 
						|
 | 
						|
/** \addtogroup gapi_compile_args
 | 
						|
 * @{
 | 
						|
 */
 | 
						|
/**
 | 
						|
 * @brief A container class for network configurations. Similar to
 | 
						|
 * GKernelPackage. Use cv::gapi::networks() to construct this object.
 | 
						|
 *
 | 
						|
 * @sa cv::gapi::networks
 | 
						|
 */
 | 
						|
struct GAPI_EXPORTS_W_SIMPLE GNetPackage {
 | 
						|
    GAPI_WRAP GNetPackage() = default;
 | 
						|
    GAPI_WRAP explicit GNetPackage(std::vector<GNetParam> nets);
 | 
						|
    explicit GNetPackage(std::initializer_list<GNetParam> ii);
 | 
						|
    std::vector<GBackend> backends() const;
 | 
						|
    std::vector<GNetParam> networks;
 | 
						|
};
 | 
						|
/** @} gapi_compile_args */
 | 
						|
} // namespace gapi
 | 
						|
 | 
						|
namespace detail {
 | 
						|
template<typename T>
 | 
						|
gapi::GNetParam strip(T&& t) {
 | 
						|
    return gapi::GNetParam { t.tag()
 | 
						|
                           , t.backend()
 | 
						|
                           , t.params()
 | 
						|
                           };
 | 
						|
}
 | 
						|
 | 
						|
template<> struct CompileArgTag<cv::gapi::GNetPackage> {
 | 
						|
    static const char* tag() { return "gapi.net_package"; }
 | 
						|
};
 | 
						|
 | 
						|
} // namespace cv::detail
 | 
						|
 | 
						|
namespace gapi {
 | 
						|
template<typename... Args>
 | 
						|
cv::gapi::GNetPackage networks(Args&&... args) {
 | 
						|
    return cv::gapi::GNetPackage({ cv::detail::strip(args)... });
 | 
						|
}
 | 
						|
 | 
						|
inline cv::gapi::GNetPackage& operator += (      cv::gapi::GNetPackage& lhs,
 | 
						|
                                           const cv::gapi::GNetPackage& rhs) {
 | 
						|
    lhs.networks.reserve(lhs.networks.size() + rhs.networks.size());
 | 
						|
    lhs.networks.insert(lhs.networks.end(), rhs.networks.begin(), rhs.networks.end());
 | 
						|
    return lhs;
 | 
						|
}
 | 
						|
 | 
						|
} // namespace gapi
 | 
						|
} // namespace cv
 | 
						|
 | 
						|
#endif // OPENCV_GAPI_INFER_HPP
 |