You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			365 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
			
		
		
	
	
			365 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
// This file is part of OpenCV project.
 | 
						|
// It is subject to the license terms in the LICENSE file found in the top-level directory
 | 
						|
// of this distribution and at http://opencv.org/license.html.
 | 
						|
//
 | 
						|
// Copyright (C) 2020 Intel Corporation
 | 
						|
 | 
						|
#ifndef OPENCV_GAPI_VIDEO_HPP
 | 
						|
#define OPENCV_GAPI_VIDEO_HPP
 | 
						|
 | 
						|
#include <utility> // std::tuple
 | 
						|
 | 
						|
#include <opencv2/gapi/gkernel.hpp>
 | 
						|
 | 
						|
 | 
						|
/** \defgroup gapi_video G-API Video processing functionality
 | 
						|
 */
 | 
						|
 | 
						|
namespace cv { namespace gapi {
 | 
						|
 | 
						|
/** @brief Structure for the Kalman filter's initialization parameters.*/
 | 
						|
 | 
						|
struct GAPI_EXPORTS KalmanParams
 | 
						|
{
 | 
						|
    // initial state
 | 
						|
 | 
						|
    //! corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
 | 
						|
    Mat state;
 | 
						|
    //! posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
 | 
						|
    Mat errorCov;
 | 
						|
 | 
						|
    // dynamic system description
 | 
						|
 | 
						|
    //! state transition matrix (A)
 | 
						|
    Mat transitionMatrix;
 | 
						|
    //! measurement matrix (H)
 | 
						|
    Mat measurementMatrix;
 | 
						|
    //! process noise covariance matrix (Q)
 | 
						|
    Mat processNoiseCov;
 | 
						|
    //! measurement noise covariance matrix (R)
 | 
						|
    Mat measurementNoiseCov;
 | 
						|
    //! control matrix (B) (Optional: not used if there's no control)
 | 
						|
    Mat controlMatrix;
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * @brief This namespace contains G-API Operations and functions for
 | 
						|
 * video-oriented algorithms, like optical flow and background subtraction.
 | 
						|
 */
 | 
						|
namespace  video
 | 
						|
{
 | 
						|
using GBuildPyrOutput  = std::tuple<GArray<GMat>, GScalar>;
 | 
						|
 | 
						|
using GOptFlowLKOutput = std::tuple<cv::GArray<cv::Point2f>,
 | 
						|
                                    cv::GArray<uchar>,
 | 
						|
                                    cv::GArray<float>>;
 | 
						|
 | 
						|
G_TYPED_KERNEL(GBuildOptFlowPyramid, <GBuildPyrOutput(GMat,Size,GScalar,bool,int,int,bool)>,
 | 
						|
               "org.opencv.video.buildOpticalFlowPyramid")
 | 
						|
{
 | 
						|
    static std::tuple<GArrayDesc,GScalarDesc>
 | 
						|
            outMeta(GMatDesc,const Size&,GScalarDesc,bool,int,int,bool)
 | 
						|
    {
 | 
						|
        return std::make_tuple(empty_array_desc(), empty_scalar_desc());
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
G_TYPED_KERNEL(GCalcOptFlowLK,
 | 
						|
               <GOptFlowLKOutput(GMat,GMat,cv::GArray<cv::Point2f>,cv::GArray<cv::Point2f>,Size,
 | 
						|
                                 GScalar,TermCriteria,int,double)>,
 | 
						|
               "org.opencv.video.calcOpticalFlowPyrLK")
 | 
						|
{
 | 
						|
    static std::tuple<GArrayDesc,GArrayDesc,GArrayDesc> outMeta(GMatDesc,GMatDesc,GArrayDesc,
 | 
						|
                                                                GArrayDesc,const Size&,GScalarDesc,
 | 
						|
                                                                const TermCriteria&,int,double)
 | 
						|
    {
 | 
						|
        return std::make_tuple(empty_array_desc(), empty_array_desc(), empty_array_desc());
 | 
						|
    }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
G_TYPED_KERNEL(GCalcOptFlowLKForPyr,
 | 
						|
               <GOptFlowLKOutput(cv::GArray<cv::GMat>,cv::GArray<cv::GMat>,
 | 
						|
                                 cv::GArray<cv::Point2f>,cv::GArray<cv::Point2f>,Size,GScalar,
 | 
						|
                                 TermCriteria,int,double)>,
 | 
						|
               "org.opencv.video.calcOpticalFlowPyrLKForPyr")
 | 
						|
{
 | 
						|
    static std::tuple<GArrayDesc,GArrayDesc,GArrayDesc> outMeta(GArrayDesc,GArrayDesc,
 | 
						|
                                                                GArrayDesc,GArrayDesc,
 | 
						|
                                                                const Size&,GScalarDesc,
 | 
						|
                                                                const TermCriteria&,int,double)
 | 
						|
    {
 | 
						|
        return std::make_tuple(empty_array_desc(), empty_array_desc(), empty_array_desc());
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
enum BackgroundSubtractorType
 | 
						|
{
 | 
						|
    TYPE_BS_MOG2,
 | 
						|
    TYPE_BS_KNN
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Structure for the Background Subtractor operation's initialization parameters.*/
 | 
						|
 | 
						|
struct BackgroundSubtractorParams
 | 
						|
{
 | 
						|
    //! Type of the Background Subtractor operation.
 | 
						|
    BackgroundSubtractorType operation = TYPE_BS_MOG2;
 | 
						|
 | 
						|
    //! Length of the history.
 | 
						|
    int history = 500;
 | 
						|
 | 
						|
    //! For MOG2: Threshold on the squared Mahalanobis distance between the pixel
 | 
						|
    //! and the model to decide whether a pixel is well described by
 | 
						|
    //! the background model.
 | 
						|
    //! For KNN: Threshold on the squared distance between the pixel and the sample
 | 
						|
    //! to decide whether a pixel is close to that sample.
 | 
						|
    double threshold = 16;
 | 
						|
 | 
						|
    //! If true, the algorithm will detect shadows and mark them.
 | 
						|
    bool detectShadows = true;
 | 
						|
 | 
						|
    //! The value between 0 and 1 that indicates how fast
 | 
						|
    //! the background model is learnt.
 | 
						|
    //! Negative parameter value makes the algorithm use some automatically
 | 
						|
    //! chosen learning rate.
 | 
						|
    double learningRate = -1;
 | 
						|
 | 
						|
    //! default constructor
 | 
						|
    BackgroundSubtractorParams() {}
 | 
						|
 | 
						|
    /** Full constructor
 | 
						|
    @param op MOG2/KNN Background Subtractor type.
 | 
						|
    @param histLength Length of the history.
 | 
						|
    @param thrshld For MOG2: Threshold on the squared Mahalanobis distance between
 | 
						|
    the pixel and the model to decide whether a pixel is well described by the background model.
 | 
						|
    For KNN: Threshold on the squared distance between the pixel and the sample to decide
 | 
						|
    whether a pixel is close to that sample.
 | 
						|
    @param detect If true, the algorithm will detect shadows and mark them. It decreases the
 | 
						|
    speed a bit, so if you do not need this feature, set the parameter to false.
 | 
						|
    @param lRate The value between 0 and 1 that indicates how fast the background model is learnt.
 | 
						|
    Negative parameter value makes the algorithm to use some automatically chosen learning rate.
 | 
						|
    */
 | 
						|
    BackgroundSubtractorParams(BackgroundSubtractorType op, int histLength,
 | 
						|
                               double thrshld, bool detect, double lRate) : operation(op),
 | 
						|
                                                                            history(histLength),
 | 
						|
                                                                            threshold(thrshld),
 | 
						|
                                                                            detectShadows(detect),
 | 
						|
                                                                            learningRate(lRate){}
 | 
						|
};
 | 
						|
 | 
						|
G_TYPED_KERNEL(GBackgroundSubtractor, <GMat(GMat, BackgroundSubtractorParams)>,
 | 
						|
               "org.opencv.video.BackgroundSubtractor")
 | 
						|
{
 | 
						|
    static GMatDesc outMeta(const GMatDesc& in, const BackgroundSubtractorParams& bsParams)
 | 
						|
    {
 | 
						|
        GAPI_Assert(bsParams.history >= 0);
 | 
						|
        GAPI_Assert(bsParams.learningRate <= 1);
 | 
						|
        return in.withType(CV_8U, 1);
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
void checkParams(const cv::gapi::KalmanParams& kfParams,
 | 
						|
                 const cv::GMatDesc& measurement, const cv::GMatDesc& control = {});
 | 
						|
 | 
						|
G_TYPED_KERNEL(GKalmanFilter, <GMat(GMat, GOpaque<bool>, GMat, KalmanParams)>,
 | 
						|
               "org.opencv.video.KalmanFilter")
 | 
						|
{
 | 
						|
    static GMatDesc outMeta(const GMatDesc& measurement, const GOpaqueDesc&,
 | 
						|
                            const GMatDesc& control, const KalmanParams& kfParams)
 | 
						|
    {
 | 
						|
        checkParams(kfParams, measurement, control);
 | 
						|
        return measurement.withSize(Size(1, kfParams.transitionMatrix.rows));
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
G_TYPED_KERNEL(GKalmanFilterNoControl, <GMat(GMat, GOpaque<bool>, KalmanParams)>, "org.opencv.video.KalmanFilterNoControl")
 | 
						|
{
 | 
						|
    static GMatDesc outMeta(const GMatDesc& measurement, const GOpaqueDesc&, const KalmanParams& kfParams)
 | 
						|
    {
 | 
						|
        checkParams(kfParams, measurement);
 | 
						|
        return measurement.withSize(Size(1, kfParams.transitionMatrix.rows));
 | 
						|
    }
 | 
						|
};
 | 
						|
} //namespace video
 | 
						|
 | 
						|
//! @addtogroup gapi_video
 | 
						|
//! @{
 | 
						|
/** @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
 | 
						|
 | 
						|
@note Function textual ID is "org.opencv.video.buildOpticalFlowPyramid"
 | 
						|
 | 
						|
@param img                8-bit input image.
 | 
						|
@param winSize            window size of optical flow algorithm. Must be not less than winSize
 | 
						|
                          argument of calcOpticalFlowPyrLK. It is needed to calculate required
 | 
						|
                          padding for pyramid levels.
 | 
						|
@param maxLevel           0-based maximal pyramid level number.
 | 
						|
@param withDerivatives    set to precompute gradients for the every pyramid level. If pyramid is
 | 
						|
                          constructed without the gradients then calcOpticalFlowPyrLK will calculate
 | 
						|
                          them internally.
 | 
						|
@param pyrBorder          the border mode for pyramid layers.
 | 
						|
@param derivBorder        the border mode for gradients.
 | 
						|
@param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
 | 
						|
                          to force data copying.
 | 
						|
 | 
						|
@return
 | 
						|
 - output pyramid.
 | 
						|
 - number of levels in constructed pyramid. Can be less than maxLevel.
 | 
						|
 */
 | 
						|
GAPI_EXPORTS std::tuple<GArray<GMat>, GScalar>
 | 
						|
buildOpticalFlowPyramid(const GMat     &img,
 | 
						|
                        const Size     &winSize,
 | 
						|
                        const GScalar  &maxLevel,
 | 
						|
                              bool      withDerivatives    = true,
 | 
						|
                              int       pyrBorder          = BORDER_REFLECT_101,
 | 
						|
                              int       derivBorder        = BORDER_CONSTANT,
 | 
						|
                              bool      tryReuseInputImage = true);
 | 
						|
 | 
						|
/** @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade
 | 
						|
method with pyramids.
 | 
						|
 | 
						|
See @cite Bouguet00 .
 | 
						|
 | 
						|
@note Function textual ID is "org.opencv.video.calcOpticalFlowPyrLK"
 | 
						|
 | 
						|
@param prevImg first 8-bit input image (GMat) or pyramid (GArray<GMat>) constructed by
 | 
						|
buildOpticalFlowPyramid.
 | 
						|
@param nextImg second input image (GMat) or pyramid (GArray<GMat>) of the same size and the same
 | 
						|
type as prevImg.
 | 
						|
@param prevPts GArray of 2D points for which the flow needs to be found; point coordinates must be
 | 
						|
single-precision floating-point numbers.
 | 
						|
@param predPts GArray of 2D points initial for the flow search; make sense only when
 | 
						|
OPTFLOW_USE_INITIAL_FLOW flag is passed; in that case the vector must have the same size as in
 | 
						|
the input.
 | 
						|
@param winSize size of the search window at each pyramid level.
 | 
						|
@param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
 | 
						|
level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
 | 
						|
algorithm will use as many levels as pyramids have but no more than maxLevel.
 | 
						|
@param criteria parameter, specifying the termination criteria of the iterative search algorithm
 | 
						|
(after the specified maximum number of iterations criteria.maxCount or when the search window
 | 
						|
moves by less than criteria.epsilon).
 | 
						|
@param flags operation flags:
 | 
						|
 -   **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
 | 
						|
     not set, then prevPts is copied to nextPts and is considered the initial estimate.
 | 
						|
 -   **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
 | 
						|
     minEigThreshold description); if the flag is not set, then L1 distance between patches
 | 
						|
     around the original and a moved point, divided by number of pixels in a window, is used as a
 | 
						|
     error measure.
 | 
						|
@param minEigThresh the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
 | 
						|
optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
 | 
						|
by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
 | 
						|
feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
 | 
						|
performance boost.
 | 
						|
 | 
						|
@return
 | 
						|
 - GArray of 2D points (with single-precision floating-point coordinates)
 | 
						|
containing the calculated new positions of input features in the second image.
 | 
						|
 - status GArray (of unsigned chars); each element of the vector is set to 1 if
 | 
						|
the flow for the corresponding features has been found, otherwise, it is set to 0.
 | 
						|
 - GArray of errors (doubles); each element of the vector is set to an error for the
 | 
						|
corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
 | 
						|
found then the error is not defined (use the status parameter to find such cases).
 | 
						|
 */
 | 
						|
GAPI_EXPORTS std::tuple<GArray<Point2f>, GArray<uchar>, GArray<float>>
 | 
						|
calcOpticalFlowPyrLK(const GMat            &prevImg,
 | 
						|
                     const GMat            &nextImg,
 | 
						|
                     const GArray<Point2f> &prevPts,
 | 
						|
                     const GArray<Point2f> &predPts,
 | 
						|
                     const Size            &winSize      = Size(21, 21),
 | 
						|
                     const GScalar         &maxLevel     = 3,
 | 
						|
                     const TermCriteria    &criteria     = TermCriteria(TermCriteria::COUNT |
 | 
						|
                                                                        TermCriteria::EPS,
 | 
						|
                                                                        30, 0.01),
 | 
						|
                           int              flags        = 0,
 | 
						|
                           double           minEigThresh = 1e-4);
 | 
						|
 | 
						|
/**
 | 
						|
@overload
 | 
						|
@note Function textual ID is "org.opencv.video.calcOpticalFlowPyrLKForPyr"
 | 
						|
*/
 | 
						|
GAPI_EXPORTS std::tuple<GArray<Point2f>, GArray<uchar>, GArray<float>>
 | 
						|
calcOpticalFlowPyrLK(const GArray<GMat>    &prevPyr,
 | 
						|
                     const GArray<GMat>    &nextPyr,
 | 
						|
                     const GArray<Point2f> &prevPts,
 | 
						|
                     const GArray<Point2f> &predPts,
 | 
						|
                     const Size            &winSize      = Size(21, 21),
 | 
						|
                     const GScalar         &maxLevel     = 3,
 | 
						|
                     const TermCriteria    &criteria     = TermCriteria(TermCriteria::COUNT |
 | 
						|
                                                                        TermCriteria::EPS,
 | 
						|
                                                                        30, 0.01),
 | 
						|
                           int              flags        = 0,
 | 
						|
                           double           minEigThresh = 1e-4);
 | 
						|
 | 
						|
/** @brief Gaussian Mixture-based or K-nearest neighbours-based Background/Foreground Segmentation Algorithm.
 | 
						|
The operation generates a foreground mask.
 | 
						|
 | 
						|
@return Output image is foreground mask, i.e. 8-bit unsigned 1-channel (binary) matrix @ref CV_8UC1.
 | 
						|
 | 
						|
@note Functional textual ID is "org.opencv.video.BackgroundSubtractor"
 | 
						|
 | 
						|
@param src input image: Floating point frame is used without scaling and should be in range [0,255].
 | 
						|
@param bsParams Set of initialization parameters for Background Subtractor kernel.
 | 
						|
*/
 | 
						|
GAPI_EXPORTS GMat BackgroundSubtractor(const GMat& src, const cv::gapi::video::BackgroundSubtractorParams& bsParams);
 | 
						|
 | 
						|
/** @brief Standard Kalman filter algorithm <http://en.wikipedia.org/wiki/Kalman_filter>.
 | 
						|
 | 
						|
@note Functional textual ID is "org.opencv.video.KalmanFilter"
 | 
						|
 | 
						|
@param measurement input matrix: 32-bit or 64-bit float 1-channel matrix containing measurements.
 | 
						|
@param haveMeasurement dynamic input flag that indicates whether we get measurements
 | 
						|
at a particular iteration .
 | 
						|
@param control input matrix: 32-bit or 64-bit float 1-channel matrix contains control data
 | 
						|
for changing dynamic system.
 | 
						|
@param kfParams Set of initialization parameters for Kalman filter kernel.
 | 
						|
 | 
						|
@return Output matrix is predicted or corrected state. They can be 32-bit or 64-bit float
 | 
						|
1-channel matrix @ref CV_32FC1 or @ref CV_64FC1.
 | 
						|
 | 
						|
@details If measurement matrix is given (haveMeasurements == true), corrected state will
 | 
						|
be returned which corresponds to the pipeline
 | 
						|
cv::KalmanFilter::predict(control) -> cv::KalmanFilter::correct(measurement).
 | 
						|
Otherwise, predicted state will be returned which corresponds to the call of
 | 
						|
cv::KalmanFilter::predict(control).
 | 
						|
@sa cv::KalmanFilter
 | 
						|
*/
 | 
						|
GAPI_EXPORTS GMat KalmanFilter(const GMat& measurement, const GOpaque<bool>& haveMeasurement,
 | 
						|
                               const GMat& control, const cv::gapi::KalmanParams& kfParams);
 | 
						|
 | 
						|
/** @overload
 | 
						|
The case of Standard Kalman filter algorithm when there is no control in a dynamic system.
 | 
						|
In this case the controlMatrix is empty and control vector is absent.
 | 
						|
 | 
						|
@note Function textual ID is "org.opencv.video.KalmanFilterNoControl"
 | 
						|
 | 
						|
@param measurement input matrix: 32-bit or 64-bit float 1-channel matrix containing measurements.
 | 
						|
@param haveMeasurement dynamic input flag that indicates whether we get measurements
 | 
						|
at a particular iteration.
 | 
						|
@param kfParams Set of initialization parameters for Kalman filter kernel.
 | 
						|
 | 
						|
@return Output matrix is predicted or corrected state. They can be 32-bit or 64-bit float
 | 
						|
1-channel matrix @ref CV_32FC1 or @ref CV_64FC1.
 | 
						|
 | 
						|
@sa cv::KalmanFilter
 | 
						|
 */
 | 
						|
GAPI_EXPORTS GMat KalmanFilter(const GMat& measurement, const GOpaque<bool>& haveMeasurement,
 | 
						|
                               const cv::gapi::KalmanParams& kfParams);
 | 
						|
 | 
						|
//! @} gapi_video
 | 
						|
} //namespace gapi
 | 
						|
} //namespace cv
 | 
						|
 | 
						|
 | 
						|
namespace cv { namespace detail {
 | 
						|
template<> struct CompileArgTag<cv::gapi::video::BackgroundSubtractorParams>
 | 
						|
{
 | 
						|
    static const char* tag()
 | 
						|
    {
 | 
						|
        return "org.opencv.video.background_substractor_params";
 | 
						|
    }
 | 
						|
};
 | 
						|
}  // namespace detail
 | 
						|
}  // namespace cv
 | 
						|
 | 
						|
#endif // OPENCV_GAPI_VIDEO_HPP
 |