You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			142 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
			
		
		
	
	
			142 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
// This file is part of OpenCV project.
 | 
						|
// It is subject to the license terms in the LICENSE file found in the top-level directory
 | 
						|
// of this distribution and at http://opencv.org/license.html.
 | 
						|
 | 
						|
#ifndef OPENCV_IMGPROC_SEGMENTATION_HPP
 | 
						|
#define OPENCV_IMGPROC_SEGMENTATION_HPP
 | 
						|
 | 
						|
#include "opencv2/imgproc.hpp"
 | 
						|
 | 
						|
namespace cv {
 | 
						|
 | 
						|
namespace segmentation {
 | 
						|
 | 
						|
//! @addtogroup imgproc_segmentation
 | 
						|
//! @{
 | 
						|
 | 
						|
 | 
						|
/** @brief Intelligent Scissors image segmentation
 | 
						|
 *
 | 
						|
 * This class is used to find the path (contour) between two points
 | 
						|
 * which can be used for image segmentation.
 | 
						|
 *
 | 
						|
 * Usage example:
 | 
						|
 * @snippet snippets/imgproc_segmentation.cpp usage_example_intelligent_scissors
 | 
						|
 *
 | 
						|
 * Reference: <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.3811&rep=rep1&type=pdf">"Intelligent Scissors for Image Composition"</a>
 | 
						|
 * algorithm designed by Eric N. Mortensen and William A. Barrett, Brigham Young University
 | 
						|
 * @cite Mortensen95intelligentscissors
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W_SIMPLE IntelligentScissorsMB
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP
 | 
						|
    IntelligentScissorsMB();
 | 
						|
 | 
						|
    /** @brief Specify weights of feature functions
 | 
						|
     *
 | 
						|
     * Consider keeping weights normalized (sum of weights equals to 1.0)
 | 
						|
     * Discrete dynamic programming (DP) goal is minimization of costs between pixels.
 | 
						|
     *
 | 
						|
     * @param weight_non_edge Specify cost of non-edge pixels (default: 0.43f)
 | 
						|
     * @param weight_gradient_direction Specify cost of gradient direction function (default: 0.43f)
 | 
						|
     * @param weight_gradient_magnitude Specify cost of gradient magnitude function (default: 0.14f)
 | 
						|
     */
 | 
						|
    CV_WRAP
 | 
						|
    IntelligentScissorsMB& setWeights(float weight_non_edge, float weight_gradient_direction, float weight_gradient_magnitude);
 | 
						|
 | 
						|
    /** @brief Specify gradient magnitude max value threshold
 | 
						|
     *
 | 
						|
     * Zero limit value is used to disable gradient magnitude thresholding (default behavior, as described in original article).
 | 
						|
     * Otherwize pixels with `gradient magnitude >= threshold` have zero cost.
 | 
						|
     *
 | 
						|
     * @note Thresholding should be used for images with irregular regions (to avoid stuck on parameters from high-contract areas, like embedded logos).
 | 
						|
     *
 | 
						|
     * @param gradient_magnitude_threshold_max Specify gradient magnitude max value threshold (default: 0, disabled)
 | 
						|
     */
 | 
						|
    CV_WRAP
 | 
						|
    IntelligentScissorsMB& setGradientMagnitudeMaxLimit(float gradient_magnitude_threshold_max = 0.0f);
 | 
						|
 | 
						|
    /** @brief Switch to "Laplacian Zero-Crossing" edge feature extractor and specify its parameters
 | 
						|
     *
 | 
						|
     * This feature extractor is used by default according to article.
 | 
						|
     *
 | 
						|
     * Implementation has additional filtering for regions with low-amplitude noise.
 | 
						|
     * This filtering is enabled through parameter of minimal gradient amplitude (use some small value 4, 8, 16).
 | 
						|
     *
 | 
						|
     * @note Current implementation of this feature extractor is based on processing of grayscale images (color image is converted to grayscale image first).
 | 
						|
     *
 | 
						|
     * @note Canny edge detector is a bit slower, but provides better results (especially on color images): use setEdgeFeatureCannyParameters().
 | 
						|
     *
 | 
						|
     * @param gradient_magnitude_min_value Minimal gradient magnitude value for edge pixels (default: 0, check is disabled)
 | 
						|
     */
 | 
						|
    CV_WRAP
 | 
						|
    IntelligentScissorsMB& setEdgeFeatureZeroCrossingParameters(float gradient_magnitude_min_value = 0.0f);
 | 
						|
 | 
						|
    /** @brief Switch edge feature extractor to use Canny edge detector
 | 
						|
     *
 | 
						|
     * @note "Laplacian Zero-Crossing" feature extractor is used by default (following to original article)
 | 
						|
     *
 | 
						|
     * @sa Canny
 | 
						|
     */
 | 
						|
    CV_WRAP
 | 
						|
    IntelligentScissorsMB& setEdgeFeatureCannyParameters(
 | 
						|
            double threshold1, double threshold2,
 | 
						|
            int apertureSize = 3, bool L2gradient = false
 | 
						|
    );
 | 
						|
 | 
						|
    /** @brief Specify input image and extract image features
 | 
						|
     *
 | 
						|
     * @param image input image. Type is #CV_8UC1 / #CV_8UC3
 | 
						|
     */
 | 
						|
    CV_WRAP
 | 
						|
    IntelligentScissorsMB& applyImage(InputArray image);
 | 
						|
 | 
						|
    /** @brief Specify custom features of imput image
 | 
						|
     *
 | 
						|
     * Customized advanced variant of applyImage() call.
 | 
						|
     *
 | 
						|
     * @param non_edge Specify cost of non-edge pixels. Type is CV_8UC1. Expected values are `{0, 1}`.
 | 
						|
     * @param gradient_direction Specify gradient direction feature. Type is CV_32FC2. Values are expected to be normalized: `x^2 + y^2 == 1`
 | 
						|
     * @param gradient_magnitude Specify cost of gradient magnitude function: Type is CV_32FC1. Values should be in range `[0, 1]`.
 | 
						|
     * @param image **Optional parameter**. Must be specified if subset of features is specified (non-specified features are calculated internally)
 | 
						|
     */
 | 
						|
    CV_WRAP
 | 
						|
    IntelligentScissorsMB& applyImageFeatures(
 | 
						|
            InputArray non_edge, InputArray gradient_direction, InputArray gradient_magnitude,
 | 
						|
            InputArray image = noArray()
 | 
						|
    );
 | 
						|
 | 
						|
    /** @brief Prepares a map of optimal paths for the given source point on the image
 | 
						|
     *
 | 
						|
     * @note applyImage() / applyImageFeatures() must be called before this call
 | 
						|
     *
 | 
						|
     * @param sourcePt The source point used to find the paths
 | 
						|
     */
 | 
						|
    CV_WRAP void buildMap(const Point& sourcePt);
 | 
						|
 | 
						|
    /** @brief Extracts optimal contour for the given target point on the image
 | 
						|
     *
 | 
						|
     * @note buildMap() must be called before this call
 | 
						|
     *
 | 
						|
     * @param targetPt The target point
 | 
						|
     * @param[out] contour The list of pixels which contains optimal path between the source and the target points of the image. Type is CV_32SC2 (compatible with `std::vector<Point>`)
 | 
						|
     * @param backward Flag to indicate reverse order of retrived pixels (use "true" value to fetch points from the target to the source point)
 | 
						|
     */
 | 
						|
    CV_WRAP void getContour(const Point& targetPt, OutputArray contour, bool backward = false) const;
 | 
						|
 | 
						|
#ifndef CV_DOXYGEN
 | 
						|
    struct Impl;
 | 
						|
    inline Impl* getImpl() const { return impl.get(); }
 | 
						|
protected:
 | 
						|
    std::shared_ptr<Impl> impl;
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
//! @}
 | 
						|
 | 
						|
}  // namespace segmentation
 | 
						|
}  // namespace cv
 | 
						|
 | 
						|
#endif // OPENCV_IMGPROC_SEGMENTATION_HPP
 |