You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			1957 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			C++
		
	
			
		
		
	
	
			1957 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			C++
		
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
 | 
						|
// Copyright (C) 2014, Itseez Inc, all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#ifndef OPENCV_ML_HPP
 | 
						|
#define OPENCV_ML_HPP
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
#  include "opencv2/core.hpp"
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
 | 
						|
#include <float.h>
 | 
						|
#include <map>
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
/**
 | 
						|
  @defgroup ml Machine Learning
 | 
						|
 | 
						|
  The Machine Learning Library (MLL) is a set of classes and functions for statistical
 | 
						|
  classification, regression, and clustering of data.
 | 
						|
 | 
						|
  Most of the classification and regression algorithms are implemented as C++ classes. As the
 | 
						|
  algorithms have different sets of features (like an ability to handle missing measurements or
 | 
						|
  categorical input variables), there is a little common ground between the classes. This common
 | 
						|
  ground is defined by the class cv::ml::StatModel that all the other ML classes are derived from.
 | 
						|
 | 
						|
  See detailed overview here: @ref ml_intro.
 | 
						|
 */
 | 
						|
 | 
						|
namespace cv
 | 
						|
{
 | 
						|
 | 
						|
namespace ml
 | 
						|
{
 | 
						|
 | 
						|
//! @addtogroup ml
 | 
						|
//! @{
 | 
						|
 | 
						|
/** @brief Variable types */
 | 
						|
enum VariableTypes
 | 
						|
{
 | 
						|
    VAR_NUMERICAL    =0, //!< same as VAR_ORDERED
 | 
						|
    VAR_ORDERED      =0, //!< ordered variables
 | 
						|
    VAR_CATEGORICAL  =1  //!< categorical variables
 | 
						|
};
 | 
						|
 | 
						|
/** @brief %Error types */
 | 
						|
enum ErrorTypes
 | 
						|
{
 | 
						|
    TEST_ERROR = 0,
 | 
						|
    TRAIN_ERROR = 1
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Sample types */
 | 
						|
enum SampleTypes
 | 
						|
{
 | 
						|
    ROW_SAMPLE = 0, //!< each training sample is a row of samples
 | 
						|
    COL_SAMPLE = 1  //!< each training sample occupies a column of samples
 | 
						|
};
 | 
						|
 | 
						|
/** @brief The structure represents the logarithmic grid range of statmodel parameters.
 | 
						|
 | 
						|
It is used for optimizing statmodel accuracy by varying model parameters, the accuracy estimate
 | 
						|
being computed by cross-validation.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W ParamGrid
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** @brief Default constructor */
 | 
						|
    ParamGrid();
 | 
						|
    /** @brief Constructor with parameters */
 | 
						|
    ParamGrid(double _minVal, double _maxVal, double _logStep);
 | 
						|
 | 
						|
    CV_PROP_RW double minVal; //!< Minimum value of the statmodel parameter. Default value is 0.
 | 
						|
    CV_PROP_RW double maxVal; //!< Maximum value of the statmodel parameter. Default value is 0.
 | 
						|
    /** @brief Logarithmic step for iterating the statmodel parameter.
 | 
						|
 | 
						|
    The grid determines the following iteration sequence of the statmodel parameter values:
 | 
						|
    \f[(minVal, minVal*step, minVal*{step}^2, \dots,  minVal*{logStep}^n),\f]
 | 
						|
    where \f$n\f$ is the maximal index satisfying
 | 
						|
    \f[\texttt{minVal} * \texttt{logStep} ^n <  \texttt{maxVal}\f]
 | 
						|
    The grid is logarithmic, so logStep must always be greater than 1. Default value is 1.
 | 
						|
    */
 | 
						|
    CV_PROP_RW double logStep;
 | 
						|
 | 
						|
    /** @brief Creates a ParamGrid Ptr that can be given to the %SVM::trainAuto method
 | 
						|
 | 
						|
    @param minVal minimum value of the parameter grid
 | 
						|
    @param maxVal maximum value of the parameter grid
 | 
						|
    @param logstep Logarithmic step for iterating the statmodel parameter
 | 
						|
    */
 | 
						|
    CV_WRAP static Ptr<ParamGrid> create(double minVal=0., double maxVal=0., double logstep=1.);
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Class encapsulating training data.
 | 
						|
 | 
						|
Please note that the class only specifies the interface of training data, but not implementation.
 | 
						|
All the statistical model classes in _ml_ module accepts Ptr\<TrainData\> as parameter. In other
 | 
						|
words, you can create your own class derived from TrainData and pass smart pointer to the instance
 | 
						|
of this class into StatModel::train.
 | 
						|
 | 
						|
@sa @ref ml_intro_data
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W TrainData
 | 
						|
{
 | 
						|
public:
 | 
						|
    static inline float missingValue() { return FLT_MAX; }
 | 
						|
    virtual ~TrainData();
 | 
						|
 | 
						|
    CV_WRAP virtual int getLayout() const = 0;
 | 
						|
    CV_WRAP virtual int getNTrainSamples() const = 0;
 | 
						|
    CV_WRAP virtual int getNTestSamples() const = 0;
 | 
						|
    CV_WRAP virtual int getNSamples() const = 0;
 | 
						|
    CV_WRAP virtual int getNVars() const = 0;
 | 
						|
    CV_WRAP virtual int getNAllVars() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual void getSample(InputArray varIdx, int sidx, float* buf) const = 0;
 | 
						|
    CV_WRAP virtual Mat getSamples() const = 0;
 | 
						|
    CV_WRAP virtual Mat getMissing() const = 0;
 | 
						|
 | 
						|
    /** @brief Returns matrix of train samples
 | 
						|
 | 
						|
    @param layout The requested layout. If it's different from the initial one, the matrix is
 | 
						|
        transposed. See ml::SampleTypes.
 | 
						|
    @param compressSamples if true, the function returns only the training samples (specified by
 | 
						|
        sampleIdx)
 | 
						|
    @param compressVars if true, the function returns the shorter training samples, containing only
 | 
						|
        the active variables.
 | 
						|
 | 
						|
    In current implementation the function tries to avoid physical data copying and returns the
 | 
						|
    matrix stored inside TrainData (unless the transposition or compression is needed).
 | 
						|
     */
 | 
						|
    CV_WRAP virtual Mat getTrainSamples(int layout=ROW_SAMPLE,
 | 
						|
                                bool compressSamples=true,
 | 
						|
                                bool compressVars=true) const = 0;
 | 
						|
 | 
						|
    /** @brief Returns the vector of responses
 | 
						|
 | 
						|
    The function returns ordered or the original categorical responses. Usually it's used in
 | 
						|
    regression algorithms.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual Mat getTrainResponses() const = 0;
 | 
						|
 | 
						|
    /** @brief Returns the vector of normalized categorical responses
 | 
						|
 | 
						|
    The function returns vector of responses. Each response is integer from `0` to `<number of
 | 
						|
    classes>-1`. The actual label value can be retrieved then from the class label vector, see
 | 
						|
    TrainData::getClassLabels.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual Mat getTrainNormCatResponses() const = 0;
 | 
						|
    CV_WRAP virtual Mat getTestResponses() const = 0;
 | 
						|
    CV_WRAP virtual Mat getTestNormCatResponses() const = 0;
 | 
						|
    CV_WRAP virtual Mat getResponses() const = 0;
 | 
						|
    CV_WRAP virtual Mat getNormCatResponses() const = 0;
 | 
						|
    CV_WRAP virtual Mat getSampleWeights() const = 0;
 | 
						|
    CV_WRAP virtual Mat getTrainSampleWeights() const = 0;
 | 
						|
    CV_WRAP virtual Mat getTestSampleWeights() const = 0;
 | 
						|
    CV_WRAP virtual Mat getVarIdx() const = 0;
 | 
						|
    CV_WRAP virtual Mat getVarType() const = 0;
 | 
						|
    CV_WRAP virtual Mat getVarSymbolFlags() const = 0;
 | 
						|
    CV_WRAP virtual int getResponseType() const = 0;
 | 
						|
    CV_WRAP virtual Mat getTrainSampleIdx() const = 0;
 | 
						|
    CV_WRAP virtual Mat getTestSampleIdx() const = 0;
 | 
						|
    CV_WRAP virtual void getValues(int vi, InputArray sidx, float* values) const = 0;
 | 
						|
    virtual void getNormCatValues(int vi, InputArray sidx, int* values) const = 0;
 | 
						|
    CV_WRAP virtual Mat getDefaultSubstValues() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual int getCatCount(int vi) const = 0;
 | 
						|
 | 
						|
    /** @brief Returns the vector of class labels
 | 
						|
 | 
						|
    The function returns vector of unique labels occurred in the responses.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual Mat getClassLabels() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual Mat getCatOfs() const = 0;
 | 
						|
    CV_WRAP virtual Mat getCatMap() const = 0;
 | 
						|
 | 
						|
    /** @brief Splits the training data into the training and test parts
 | 
						|
    @sa TrainData::setTrainTestSplitRatio
 | 
						|
     */
 | 
						|
    CV_WRAP virtual void setTrainTestSplit(int count, bool shuffle=true) = 0;
 | 
						|
 | 
						|
    /** @brief Splits the training data into the training and test parts
 | 
						|
 | 
						|
    The function selects a subset of specified relative size and then returns it as the training
 | 
						|
    set. If the function is not called, all the data is used for training. Please, note that for
 | 
						|
    each of TrainData::getTrain\* there is corresponding TrainData::getTest\*, so that the test
 | 
						|
    subset can be retrieved and processed as well.
 | 
						|
    @sa TrainData::setTrainTestSplit
 | 
						|
     */
 | 
						|
    CV_WRAP virtual void setTrainTestSplitRatio(double ratio, bool shuffle=true) = 0;
 | 
						|
    CV_WRAP virtual void shuffleTrainTest() = 0;
 | 
						|
 | 
						|
    /** @brief Returns matrix of test samples */
 | 
						|
    CV_WRAP virtual Mat getTestSamples() const = 0;
 | 
						|
 | 
						|
    /** @brief Returns vector of symbolic names captured in loadFromCSV() */
 | 
						|
    CV_WRAP virtual void getNames(std::vector<String>& names) const = 0;
 | 
						|
 | 
						|
    /** @brief Extract from 1D vector elements specified by passed indexes.
 | 
						|
    @param vec input vector (supported types: CV_32S, CV_32F, CV_64F)
 | 
						|
    @param idx 1D index vector
 | 
						|
     */
 | 
						|
    static CV_WRAP Mat getSubVector(const Mat& vec, const Mat& idx);
 | 
						|
 | 
						|
    /** @brief Extract from matrix rows/cols specified by passed indexes.
 | 
						|
    @param matrix input matrix (supported types: CV_32S, CV_32F, CV_64F)
 | 
						|
    @param idx 1D index vector
 | 
						|
    @param layout specifies to extract rows (cv::ml::ROW_SAMPLES) or to extract columns (cv::ml::COL_SAMPLES)
 | 
						|
     */
 | 
						|
    static CV_WRAP Mat getSubMatrix(const Mat& matrix, const Mat& idx, int layout);
 | 
						|
 | 
						|
    /** @brief Reads the dataset from a .csv file and returns the ready-to-use training data.
 | 
						|
 | 
						|
    @param filename The input file name
 | 
						|
    @param headerLineCount The number of lines in the beginning to skip; besides the header, the
 | 
						|
        function also skips empty lines and lines staring with `#`
 | 
						|
    @param responseStartIdx Index of the first output variable. If -1, the function considers the
 | 
						|
        last variable as the response
 | 
						|
    @param responseEndIdx Index of the last output variable + 1. If -1, then there is single
 | 
						|
        response variable at responseStartIdx.
 | 
						|
    @param varTypeSpec The optional text string that specifies the variables' types. It has the
 | 
						|
        format `ord[n1-n2,n3,n4-n5,...]cat[n6,n7-n8,...]`. That is, variables from `n1 to n2`
 | 
						|
        (inclusive range), `n3`, `n4 to n5` ... are considered ordered and `n6`, `n7 to n8` ... are
 | 
						|
        considered as categorical. The range `[n1..n2] + [n3] + [n4..n5] + ... + [n6] + [n7..n8]`
 | 
						|
        should cover all the variables. If varTypeSpec is not specified, then algorithm uses the
 | 
						|
        following rules:
 | 
						|
        - all input variables are considered ordered by default. If some column contains has non-
 | 
						|
          numerical values, e.g. 'apple', 'pear', 'apple', 'apple', 'mango', the corresponding
 | 
						|
          variable is considered categorical.
 | 
						|
        - if there are several output variables, they are all considered as ordered. Error is
 | 
						|
          reported when non-numerical values are used.
 | 
						|
        - if there is a single output variable, then if its values are non-numerical or are all
 | 
						|
          integers, then it's considered categorical. Otherwise, it's considered ordered.
 | 
						|
    @param delimiter The character used to separate values in each line.
 | 
						|
    @param missch The character used to specify missing measurements. It should not be a digit.
 | 
						|
        Although it's a non-numerical value, it surely does not affect the decision of whether the
 | 
						|
        variable ordered or categorical.
 | 
						|
    @note If the dataset only contains input variables and no responses, use responseStartIdx = -2
 | 
						|
        and responseEndIdx = 0. The output variables vector will just contain zeros.
 | 
						|
     */
 | 
						|
    static Ptr<TrainData> loadFromCSV(const String& filename,
 | 
						|
                                      int headerLineCount,
 | 
						|
                                      int responseStartIdx=-1,
 | 
						|
                                      int responseEndIdx=-1,
 | 
						|
                                      const String& varTypeSpec=String(),
 | 
						|
                                      char delimiter=',',
 | 
						|
                                      char missch='?');
 | 
						|
 | 
						|
    /** @brief Creates training data from in-memory arrays.
 | 
						|
 | 
						|
    @param samples matrix of samples. It should have CV_32F type.
 | 
						|
    @param layout see ml::SampleTypes.
 | 
						|
    @param responses matrix of responses. If the responses are scalar, they should be stored as a
 | 
						|
        single row or as a single column. The matrix should have type CV_32F or CV_32S (in the
 | 
						|
        former case the responses are considered as ordered by default; in the latter case - as
 | 
						|
        categorical)
 | 
						|
    @param varIdx vector specifying which variables to use for training. It can be an integer vector
 | 
						|
        (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of
 | 
						|
        active variables.
 | 
						|
    @param sampleIdx vector specifying which samples to use for training. It can be an integer
 | 
						|
        vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask
 | 
						|
        of training samples.
 | 
						|
    @param sampleWeights optional vector with weights for each sample. It should have CV_32F type.
 | 
						|
    @param varType optional vector of type CV_8U and size `<number_of_variables_in_samples> +
 | 
						|
        <number_of_variables_in_responses>`, containing types of each input and output variable. See
 | 
						|
        ml::VariableTypes.
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<TrainData> create(InputArray samples, int layout, InputArray responses,
 | 
						|
                                 InputArray varIdx=noArray(), InputArray sampleIdx=noArray(),
 | 
						|
                                 InputArray sampleWeights=noArray(), InputArray varType=noArray());
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Base class for statistical models in OpenCV ML.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W StatModel : public Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** Predict options */
 | 
						|
    enum Flags {
 | 
						|
        UPDATE_MODEL = 1,
 | 
						|
        RAW_OUTPUT=1, //!< makes the method return the raw results (the sum), not the class label
 | 
						|
        COMPRESSED_INPUT=2,
 | 
						|
        PREPROCESSED_INPUT=4
 | 
						|
    };
 | 
						|
 | 
						|
    /** @brief Returns the number of variables in training samples */
 | 
						|
    CV_WRAP virtual int getVarCount() const = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual bool empty() const CV_OVERRIDE;
 | 
						|
 | 
						|
    /** @brief Returns true if the model is trained */
 | 
						|
    CV_WRAP virtual bool isTrained() const = 0;
 | 
						|
    /** @brief Returns true if the model is classifier */
 | 
						|
    CV_WRAP virtual bool isClassifier() const = 0;
 | 
						|
 | 
						|
    /** @brief Trains the statistical model
 | 
						|
 | 
						|
    @param trainData training data that can be loaded from file using TrainData::loadFromCSV or
 | 
						|
        created with TrainData::create.
 | 
						|
    @param flags optional flags, depending on the model. Some of the models can be updated with the
 | 
						|
        new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
 | 
						|
     */
 | 
						|
    CV_WRAP virtual bool train( const Ptr<TrainData>& trainData, int flags=0 );
 | 
						|
 | 
						|
    /** @brief Trains the statistical model
 | 
						|
 | 
						|
    @param samples training samples
 | 
						|
    @param layout See ml::SampleTypes.
 | 
						|
    @param responses vector of responses associated with the training samples.
 | 
						|
    */
 | 
						|
    CV_WRAP virtual bool train( InputArray samples, int layout, InputArray responses );
 | 
						|
 | 
						|
    /** @brief Computes error on the training or test dataset
 | 
						|
 | 
						|
    @param data the training data
 | 
						|
    @param test if true, the error is computed over the test subset of the data, otherwise it's
 | 
						|
        computed over the training subset of the data. Please note that if you loaded a completely
 | 
						|
        different dataset to evaluate already trained classifier, you will probably want not to set
 | 
						|
        the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
 | 
						|
        that the error is computed for the whole new set. Yes, this sounds a bit confusing.
 | 
						|
    @param resp the optional output responses.
 | 
						|
 | 
						|
    The method uses StatModel::predict to compute the error. For regression models the error is
 | 
						|
    computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
 | 
						|
     */
 | 
						|
    CV_WRAP virtual float calcError( const Ptr<TrainData>& data, bool test, OutputArray resp ) const;
 | 
						|
 | 
						|
    /** @brief Predicts response(s) for the provided sample(s)
 | 
						|
 | 
						|
    @param samples The input samples, floating-point matrix
 | 
						|
    @param results The optional output matrix of results.
 | 
						|
    @param flags The optional flags, model-dependent. See cv::ml::StatModel::Flags.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
 | 
						|
 | 
						|
    /** @brief Create and train model with default parameters
 | 
						|
 | 
						|
    The class must implement static `create()` method with no parameters or with all default parameter values
 | 
						|
    */
 | 
						|
    template<typename _Tp> static Ptr<_Tp> train(const Ptr<TrainData>& data, int flags=0)
 | 
						|
    {
 | 
						|
        Ptr<_Tp> model = _Tp::create();
 | 
						|
        return !model.empty() && model->train(data, flags) ? model : Ptr<_Tp>();
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                 Normal Bayes Classifier                                *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
/** @brief Bayes classifier for normally distributed data.
 | 
						|
 | 
						|
@sa @ref ml_intro_bayes
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W NormalBayesClassifier : public StatModel
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** @brief Predicts the response for sample(s).
 | 
						|
 | 
						|
    The method estimates the most probable classes for input vectors. Input vectors (one or more)
 | 
						|
    are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one
 | 
						|
    output vector outputs. The predicted class for a single input vector is returned by the method.
 | 
						|
    The vector outputProbs contains the output probabilities corresponding to each element of
 | 
						|
    result.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual float predictProb( InputArray inputs, OutputArray outputs,
 | 
						|
                               OutputArray outputProbs, int flags=0 ) const = 0;
 | 
						|
 | 
						|
    /** Creates empty model
 | 
						|
    Use StatModel::train to train the model after creation. */
 | 
						|
    CV_WRAP static Ptr<NormalBayesClassifier> create();
 | 
						|
 | 
						|
    /** @brief Loads and creates a serialized NormalBayesClassifier from a file
 | 
						|
     *
 | 
						|
     * Use NormalBayesClassifier::save to serialize and store an NormalBayesClassifier to disk.
 | 
						|
     * Load the NormalBayesClassifier from this file again, by calling this function with the path to the file.
 | 
						|
     * Optionally specify the node for the file containing the classifier
 | 
						|
     *
 | 
						|
     * @param filepath path to serialized NormalBayesClassifier
 | 
						|
     * @param nodeName name of node containing the classifier
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<NormalBayesClassifier> load(const String& filepath , const String& nodeName = String());
 | 
						|
};
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                          K-Nearest Neighbour Classifier                                *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
/** @brief The class implements K-Nearest Neighbors model
 | 
						|
 | 
						|
@sa @ref ml_intro_knn
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W KNearest : public StatModel
 | 
						|
{
 | 
						|
public:
 | 
						|
 | 
						|
    /** Default number of neighbors to use in predict method. */
 | 
						|
    /** @see setDefaultK */
 | 
						|
    CV_WRAP virtual int getDefaultK() const = 0;
 | 
						|
    /** @copybrief getDefaultK @see getDefaultK */
 | 
						|
    CV_WRAP virtual void setDefaultK(int val) = 0;
 | 
						|
 | 
						|
    /** Whether classification or regression model should be trained. */
 | 
						|
    /** @see setIsClassifier */
 | 
						|
    CV_WRAP virtual bool getIsClassifier() const = 0;
 | 
						|
    /** @copybrief getIsClassifier @see getIsClassifier */
 | 
						|
    CV_WRAP virtual void setIsClassifier(bool val) = 0;
 | 
						|
 | 
						|
    /** Parameter for KDTree implementation. */
 | 
						|
    /** @see setEmax */
 | 
						|
    CV_WRAP virtual int getEmax() const = 0;
 | 
						|
    /** @copybrief getEmax @see getEmax */
 | 
						|
    CV_WRAP virtual void setEmax(int val) = 0;
 | 
						|
 | 
						|
    /** %Algorithm type, one of KNearest::Types. */
 | 
						|
    /** @see setAlgorithmType */
 | 
						|
    CV_WRAP virtual int getAlgorithmType() const = 0;
 | 
						|
    /** @copybrief getAlgorithmType @see getAlgorithmType */
 | 
						|
    CV_WRAP virtual void setAlgorithmType(int val) = 0;
 | 
						|
 | 
						|
    /** @brief Finds the neighbors and predicts responses for input vectors.
 | 
						|
 | 
						|
    @param samples Input samples stored by rows. It is a single-precision floating-point matrix of
 | 
						|
        `<number_of_samples> * k` size.
 | 
						|
    @param k Number of used nearest neighbors. Should be greater than 1.
 | 
						|
    @param results Vector with results of prediction (regression or classification) for each input
 | 
						|
        sample. It is a single-precision floating-point vector with `<number_of_samples>` elements.
 | 
						|
    @param neighborResponses Optional output values for corresponding neighbors. It is a single-
 | 
						|
        precision floating-point matrix of `<number_of_samples> * k` size.
 | 
						|
    @param dist Optional output distances from the input vectors to the corresponding neighbors. It
 | 
						|
        is a single-precision floating-point matrix of `<number_of_samples> * k` size.
 | 
						|
 | 
						|
    For each input vector (a row of the matrix samples), the method finds the k nearest neighbors.
 | 
						|
    In case of regression, the predicted result is a mean value of the particular vector's neighbor
 | 
						|
    responses. In case of classification, the class is determined by voting.
 | 
						|
 | 
						|
    For each input vector, the neighbors are sorted by their distances to the vector.
 | 
						|
 | 
						|
    In case of C++ interface you can use output pointers to empty matrices and the function will
 | 
						|
    allocate memory itself.
 | 
						|
 | 
						|
    If only a single input vector is passed, all output matrices are optional and the predicted
 | 
						|
    value is returned by the method.
 | 
						|
 | 
						|
    The function is parallelized with the TBB library.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual float findNearest( InputArray samples, int k,
 | 
						|
                               OutputArray results,
 | 
						|
                               OutputArray neighborResponses=noArray(),
 | 
						|
                               OutputArray dist=noArray() ) const = 0;
 | 
						|
 | 
						|
    /** @brief Implementations of KNearest algorithm
 | 
						|
       */
 | 
						|
    enum Types
 | 
						|
    {
 | 
						|
        BRUTE_FORCE=1,
 | 
						|
        KDTREE=2
 | 
						|
    };
 | 
						|
 | 
						|
    /** @brief Creates the empty model
 | 
						|
 | 
						|
    The static method creates empty %KNearest classifier. It should be then trained using StatModel::train method.
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<KNearest> create();
 | 
						|
    /** @brief Loads and creates a serialized knearest from a file
 | 
						|
     *
 | 
						|
     * Use KNearest::save to serialize and store an KNearest to disk.
 | 
						|
     * Load the KNearest from this file again, by calling this function with the path to the file.
 | 
						|
     *
 | 
						|
     * @param filepath path to serialized KNearest
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<KNearest> load(const String& filepath);
 | 
						|
};
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                   Support Vector Machines                              *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
/** @brief Support Vector Machines.
 | 
						|
 | 
						|
@sa @ref ml_intro_svm
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W SVM : public StatModel
 | 
						|
{
 | 
						|
public:
 | 
						|
 | 
						|
    class CV_EXPORTS Kernel : public Algorithm
 | 
						|
    {
 | 
						|
    public:
 | 
						|
        virtual int getType() const = 0;
 | 
						|
        virtual void calc( int vcount, int n, const float* vecs, const float* another, float* results ) = 0;
 | 
						|
    };
 | 
						|
 | 
						|
    /** Type of a %SVM formulation.
 | 
						|
    See SVM::Types. Default value is SVM::C_SVC. */
 | 
						|
    /** @see setType */
 | 
						|
    CV_WRAP virtual int getType() const = 0;
 | 
						|
    /** @copybrief getType @see getType */
 | 
						|
    CV_WRAP virtual void setType(int val) = 0;
 | 
						|
 | 
						|
    /** Parameter \f$\gamma\f$ of a kernel function.
 | 
						|
    For SVM::POLY, SVM::RBF, SVM::SIGMOID or SVM::CHI2. Default value is 1. */
 | 
						|
    /** @see setGamma */
 | 
						|
    CV_WRAP virtual double getGamma() const = 0;
 | 
						|
    /** @copybrief getGamma @see getGamma */
 | 
						|
    CV_WRAP virtual void setGamma(double val) = 0;
 | 
						|
 | 
						|
    /** Parameter _coef0_ of a kernel function.
 | 
						|
    For SVM::POLY or SVM::SIGMOID. Default value is 0.*/
 | 
						|
    /** @see setCoef0 */
 | 
						|
    CV_WRAP virtual double getCoef0() const = 0;
 | 
						|
    /** @copybrief getCoef0 @see getCoef0 */
 | 
						|
    CV_WRAP virtual void setCoef0(double val) = 0;
 | 
						|
 | 
						|
    /** Parameter _degree_ of a kernel function.
 | 
						|
    For SVM::POLY. Default value is 0. */
 | 
						|
    /** @see setDegree */
 | 
						|
    CV_WRAP virtual double getDegree() const = 0;
 | 
						|
    /** @copybrief getDegree @see getDegree */
 | 
						|
    CV_WRAP virtual void setDegree(double val) = 0;
 | 
						|
 | 
						|
    /** Parameter _C_ of a %SVM optimization problem.
 | 
						|
    For SVM::C_SVC, SVM::EPS_SVR or SVM::NU_SVR. Default value is 0. */
 | 
						|
    /** @see setC */
 | 
						|
    CV_WRAP virtual double getC() const = 0;
 | 
						|
    /** @copybrief getC @see getC */
 | 
						|
    CV_WRAP virtual void setC(double val) = 0;
 | 
						|
 | 
						|
    /** Parameter \f$\nu\f$ of a %SVM optimization problem.
 | 
						|
    For SVM::NU_SVC, SVM::ONE_CLASS or SVM::NU_SVR. Default value is 0. */
 | 
						|
    /** @see setNu */
 | 
						|
    CV_WRAP virtual double getNu() const = 0;
 | 
						|
    /** @copybrief getNu @see getNu */
 | 
						|
    CV_WRAP virtual void setNu(double val) = 0;
 | 
						|
 | 
						|
    /** Parameter \f$\epsilon\f$ of a %SVM optimization problem.
 | 
						|
    For SVM::EPS_SVR. Default value is 0. */
 | 
						|
    /** @see setP */
 | 
						|
    CV_WRAP virtual double getP() const = 0;
 | 
						|
    /** @copybrief getP @see getP */
 | 
						|
    CV_WRAP virtual void setP(double val) = 0;
 | 
						|
 | 
						|
    /** Optional weights in the SVM::C_SVC problem, assigned to particular classes.
 | 
						|
    They are multiplied by _C_ so the parameter _C_ of class _i_ becomes `classWeights(i) * C`. Thus
 | 
						|
    these weights affect the misclassification penalty for different classes. The larger weight,
 | 
						|
    the larger penalty on misclassification of data from the corresponding class. Default value is
 | 
						|
    empty Mat. */
 | 
						|
    /** @see setClassWeights */
 | 
						|
    CV_WRAP virtual cv::Mat getClassWeights() const = 0;
 | 
						|
    /** @copybrief getClassWeights @see getClassWeights */
 | 
						|
    CV_WRAP virtual void setClassWeights(const cv::Mat &val) = 0;
 | 
						|
 | 
						|
    /** Termination criteria of the iterative %SVM training procedure which solves a partial
 | 
						|
    case of constrained quadratic optimization problem.
 | 
						|
    You can specify tolerance and/or the maximum number of iterations. Default value is
 | 
						|
    `TermCriteria( TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, FLT_EPSILON )`; */
 | 
						|
    /** @see setTermCriteria */
 | 
						|
    CV_WRAP virtual cv::TermCriteria getTermCriteria() const = 0;
 | 
						|
    /** @copybrief getTermCriteria @see getTermCriteria */
 | 
						|
    CV_WRAP virtual void setTermCriteria(const cv::TermCriteria &val) = 0;
 | 
						|
 | 
						|
    /** Type of a %SVM kernel.
 | 
						|
    See SVM::KernelTypes. Default value is SVM::RBF. */
 | 
						|
    CV_WRAP virtual int getKernelType() const = 0;
 | 
						|
 | 
						|
    /** Initialize with one of predefined kernels.
 | 
						|
    See SVM::KernelTypes. */
 | 
						|
    CV_WRAP virtual void setKernel(int kernelType) = 0;
 | 
						|
 | 
						|
    /** Initialize with custom kernel.
 | 
						|
    See SVM::Kernel class for implementation details */
 | 
						|
    virtual void setCustomKernel(const Ptr<Kernel> &_kernel) = 0;
 | 
						|
 | 
						|
    //! %SVM type
 | 
						|
    enum Types {
 | 
						|
        /** C-Support Vector Classification. n-class classification (n \f$\geq\f$ 2), allows
 | 
						|
        imperfect separation of classes with penalty multiplier C for outliers. */
 | 
						|
        C_SVC=100,
 | 
						|
        /** \f$\nu\f$-Support Vector Classification. n-class classification with possible
 | 
						|
        imperfect separation. Parameter \f$\nu\f$ (in the range 0..1, the larger the value, the smoother
 | 
						|
        the decision boundary) is used instead of C. */
 | 
						|
        NU_SVC=101,
 | 
						|
        /** Distribution Estimation (One-class %SVM). All the training data are from
 | 
						|
        the same class, %SVM builds a boundary that separates the class from the rest of the feature
 | 
						|
        space. */
 | 
						|
        ONE_CLASS=102,
 | 
						|
        /** \f$\epsilon\f$-Support Vector Regression. The distance between feature vectors
 | 
						|
        from the training set and the fitting hyper-plane must be less than p. For outliers the
 | 
						|
        penalty multiplier C is used. */
 | 
						|
        EPS_SVR=103,
 | 
						|
        /** \f$\nu\f$-Support Vector Regression. \f$\nu\f$ is used instead of p.
 | 
						|
        See @cite LibSVM for details. */
 | 
						|
        NU_SVR=104
 | 
						|
    };
 | 
						|
 | 
						|
    /** @brief %SVM kernel type
 | 
						|
 | 
						|
    A comparison of different kernels on the following 2D test case with four classes. Four
 | 
						|
    SVM::C_SVC SVMs have been trained (one against rest) with auto_train. Evaluation on three
 | 
						|
    different kernels (SVM::CHI2, SVM::INTER, SVM::RBF). The color depicts the class with max score.
 | 
						|
    Bright means max-score \> 0, dark means max-score \< 0.
 | 
						|
    
 | 
						|
    */
 | 
						|
    enum KernelTypes {
 | 
						|
        /** Returned by SVM::getKernelType in case when custom kernel has been set */
 | 
						|
        CUSTOM=-1,
 | 
						|
        /** Linear kernel. No mapping is done, linear discrimination (or regression) is
 | 
						|
        done in the original feature space. It is the fastest option. \f$K(x_i, x_j) = x_i^T x_j\f$. */
 | 
						|
        LINEAR=0,
 | 
						|
        /** Polynomial kernel:
 | 
						|
        \f$K(x_i, x_j) = (\gamma x_i^T x_j + coef0)^{degree}, \gamma > 0\f$. */
 | 
						|
        POLY=1,
 | 
						|
        /** Radial basis function (RBF), a good choice in most cases.
 | 
						|
        \f$K(x_i, x_j) = e^{-\gamma ||x_i - x_j||^2}, \gamma > 0\f$. */
 | 
						|
        RBF=2,
 | 
						|
        /** Sigmoid kernel: \f$K(x_i, x_j) = \tanh(\gamma x_i^T x_j + coef0)\f$. */
 | 
						|
        SIGMOID=3,
 | 
						|
        /** Exponential Chi2 kernel, similar to the RBF kernel:
 | 
						|
        \f$K(x_i, x_j) = e^{-\gamma \chi^2(x_i,x_j)}, \chi^2(x_i,x_j) = (x_i-x_j)^2/(x_i+x_j), \gamma > 0\f$. */
 | 
						|
        CHI2=4,
 | 
						|
        /** Histogram intersection kernel. A fast kernel. \f$K(x_i, x_j) = min(x_i,x_j)\f$. */
 | 
						|
        INTER=5
 | 
						|
    };
 | 
						|
 | 
						|
    //! %SVM params type
 | 
						|
    enum ParamTypes {
 | 
						|
        C=0,
 | 
						|
        GAMMA=1,
 | 
						|
        P=2,
 | 
						|
        NU=3,
 | 
						|
        COEF=4,
 | 
						|
        DEGREE=5
 | 
						|
    };
 | 
						|
 | 
						|
    /** @brief Trains an %SVM with optimal parameters.
 | 
						|
 | 
						|
    @param data the training data that can be constructed using TrainData::create or
 | 
						|
        TrainData::loadFromCSV.
 | 
						|
    @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One
 | 
						|
        subset is used to test the model, the others form the train set. So, the %SVM algorithm is
 | 
						|
        executed kFold times.
 | 
						|
    @param Cgrid grid for C
 | 
						|
    @param gammaGrid grid for gamma
 | 
						|
    @param pGrid grid for p
 | 
						|
    @param nuGrid grid for nu
 | 
						|
    @param coeffGrid grid for coeff
 | 
						|
    @param degreeGrid grid for degree
 | 
						|
    @param balanced If true and the problem is 2-class classification then the method creates more
 | 
						|
        balanced cross-validation subsets that is proportions between classes in subsets are close
 | 
						|
        to such proportion in the whole train dataset.
 | 
						|
 | 
						|
    The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
 | 
						|
    nu, coef0, degree. Parameters are considered optimal when the cross-validation
 | 
						|
    estimate of the test set error is minimal.
 | 
						|
 | 
						|
    If there is no need to optimize a parameter, the corresponding grid step should be set to any
 | 
						|
    value less than or equal to 1. For example, to avoid optimization in gamma, set `gammaGrid.step
 | 
						|
    = 0`, `gammaGrid.minVal`, `gamma_grid.maxVal` as arbitrary numbers. In this case, the value
 | 
						|
    `Gamma` is taken for gamma.
 | 
						|
 | 
						|
    And, finally, if the optimization in a parameter is required but the corresponding grid is
 | 
						|
    unknown, you may call the function SVM::getDefaultGrid. To generate a grid, for example, for
 | 
						|
    gamma, call `SVM::getDefaultGrid(SVM::GAMMA)`.
 | 
						|
 | 
						|
    This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
 | 
						|
    regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
 | 
						|
    the usual %SVM with parameters specified in params is executed.
 | 
						|
     */
 | 
						|
    virtual bool trainAuto( const Ptr<TrainData>& data, int kFold = 10,
 | 
						|
                    ParamGrid Cgrid = getDefaultGrid(C),
 | 
						|
                    ParamGrid gammaGrid  = getDefaultGrid(GAMMA),
 | 
						|
                    ParamGrid pGrid      = getDefaultGrid(P),
 | 
						|
                    ParamGrid nuGrid     = getDefaultGrid(NU),
 | 
						|
                    ParamGrid coeffGrid  = getDefaultGrid(COEF),
 | 
						|
                    ParamGrid degreeGrid = getDefaultGrid(DEGREE),
 | 
						|
                    bool balanced=false) = 0;
 | 
						|
 | 
						|
    /** @brief Trains an %SVM with optimal parameters
 | 
						|
 | 
						|
    @param samples training samples
 | 
						|
    @param layout See ml::SampleTypes.
 | 
						|
    @param responses vector of responses associated with the training samples.
 | 
						|
    @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One
 | 
						|
        subset is used to test the model, the others form the train set. So, the %SVM algorithm is
 | 
						|
    @param Cgrid grid for C
 | 
						|
    @param gammaGrid grid for gamma
 | 
						|
    @param pGrid grid for p
 | 
						|
    @param nuGrid grid for nu
 | 
						|
    @param coeffGrid grid for coeff
 | 
						|
    @param degreeGrid grid for degree
 | 
						|
    @param balanced If true and the problem is 2-class classification then the method creates more
 | 
						|
        balanced cross-validation subsets that is proportions between classes in subsets are close
 | 
						|
        to such proportion in the whole train dataset.
 | 
						|
 | 
						|
    The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
 | 
						|
    nu, coef0, degree. Parameters are considered optimal when the cross-validation
 | 
						|
    estimate of the test set error is minimal.
 | 
						|
 | 
						|
    This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
 | 
						|
    offers rudimentary parameter options.
 | 
						|
 | 
						|
    This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
 | 
						|
    regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
 | 
						|
    the usual %SVM with parameters specified in params is executed.
 | 
						|
    */
 | 
						|
    CV_WRAP virtual bool trainAuto(InputArray samples,
 | 
						|
            int layout,
 | 
						|
            InputArray responses,
 | 
						|
            int kFold = 10,
 | 
						|
            Ptr<ParamGrid> Cgrid = SVM::getDefaultGridPtr(SVM::C),
 | 
						|
            Ptr<ParamGrid> gammaGrid  = SVM::getDefaultGridPtr(SVM::GAMMA),
 | 
						|
            Ptr<ParamGrid> pGrid      = SVM::getDefaultGridPtr(SVM::P),
 | 
						|
            Ptr<ParamGrid> nuGrid     = SVM::getDefaultGridPtr(SVM::NU),
 | 
						|
            Ptr<ParamGrid> coeffGrid  = SVM::getDefaultGridPtr(SVM::COEF),
 | 
						|
            Ptr<ParamGrid> degreeGrid = SVM::getDefaultGridPtr(SVM::DEGREE),
 | 
						|
            bool balanced=false) = 0;
 | 
						|
 | 
						|
    /** @brief Retrieves all the support vectors
 | 
						|
 | 
						|
    The method returns all the support vectors as a floating-point matrix, where support vectors are
 | 
						|
    stored as matrix rows.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual Mat getSupportVectors() const = 0;
 | 
						|
 | 
						|
    /** @brief Retrieves all the uncompressed support vectors of a linear %SVM
 | 
						|
 | 
						|
    The method returns all the uncompressed support vectors of a linear %SVM that the compressed
 | 
						|
    support vector, used for prediction, was derived from. They are returned in a floating-point
 | 
						|
    matrix, where the support vectors are stored as matrix rows.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual Mat getUncompressedSupportVectors() const = 0;
 | 
						|
 | 
						|
    /** @brief Retrieves the decision function
 | 
						|
 | 
						|
    @param i the index of the decision function. If the problem solved is regression, 1-class or
 | 
						|
        2-class classification, then there will be just one decision function and the index should
 | 
						|
        always be 0. Otherwise, in the case of N-class classification, there will be \f$N(N-1)/2\f$
 | 
						|
        decision functions.
 | 
						|
    @param alpha the optional output vector for weights, corresponding to different support vectors.
 | 
						|
        In the case of linear %SVM all the alpha's will be 1's.
 | 
						|
    @param svidx the optional output vector of indices of support vectors within the matrix of
 | 
						|
        support vectors (which can be retrieved by SVM::getSupportVectors). In the case of linear
 | 
						|
        %SVM each decision function consists of a single "compressed" support vector.
 | 
						|
 | 
						|
    The method returns rho parameter of the decision function, a scalar subtracted from the weighted
 | 
						|
    sum of kernel responses.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual double getDecisionFunction(int i, OutputArray alpha, OutputArray svidx) const = 0;
 | 
						|
 | 
						|
    /** @brief Generates a grid for %SVM parameters.
 | 
						|
 | 
						|
    @param param_id %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is
 | 
						|
    generated for the parameter with this ID.
 | 
						|
 | 
						|
    The function generates a grid for the specified parameter of the %SVM algorithm. The grid may be
 | 
						|
    passed to the function SVM::trainAuto.
 | 
						|
     */
 | 
						|
    static ParamGrid getDefaultGrid( int param_id );
 | 
						|
 | 
						|
    /** @brief Generates a grid for %SVM parameters.
 | 
						|
 | 
						|
    @param param_id %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is
 | 
						|
    generated for the parameter with this ID.
 | 
						|
 | 
						|
    The function generates a grid pointer for the specified parameter of the %SVM algorithm.
 | 
						|
    The grid may be passed to the function SVM::trainAuto.
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<ParamGrid> getDefaultGridPtr( int param_id );
 | 
						|
 | 
						|
    /** Creates empty model.
 | 
						|
    Use StatModel::train to train the model. Since %SVM has several parameters, you may want to
 | 
						|
    find the best parameters for your problem, it can be done with SVM::trainAuto. */
 | 
						|
    CV_WRAP static Ptr<SVM> create();
 | 
						|
 | 
						|
    /** @brief Loads and creates a serialized svm from a file
 | 
						|
     *
 | 
						|
     * Use SVM::save to serialize and store an SVM to disk.
 | 
						|
     * Load the SVM from this file again, by calling this function with the path to the file.
 | 
						|
     *
 | 
						|
     * @param filepath path to serialized svm
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<SVM> load(const String& filepath);
 | 
						|
};
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                              Expectation - Maximization                                *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
/** @brief The class implements the Expectation Maximization algorithm.
 | 
						|
 | 
						|
@sa @ref ml_intro_em
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W EM : public StatModel
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! Type of covariation matrices
 | 
						|
    enum Types {
 | 
						|
        /** A scaled identity matrix \f$\mu_k * I\f$. There is the only
 | 
						|
        parameter \f$\mu_k\f$ to be estimated for each matrix. The option may be used in special cases,
 | 
						|
        when the constraint is relevant, or as a first step in the optimization (for example in case
 | 
						|
        when the data is preprocessed with PCA). The results of such preliminary estimation may be
 | 
						|
        passed again to the optimization procedure, this time with
 | 
						|
        covMatType=EM::COV_MAT_DIAGONAL. */
 | 
						|
        COV_MAT_SPHERICAL=0,
 | 
						|
        /** A diagonal matrix with positive diagonal elements. The number of
 | 
						|
        free parameters is d for each matrix. This is most commonly used option yielding good
 | 
						|
        estimation results. */
 | 
						|
        COV_MAT_DIAGONAL=1,
 | 
						|
        /** A symmetric positively defined matrix. The number of free
 | 
						|
        parameters in each matrix is about \f$d^2/2\f$. It is not recommended to use this option, unless
 | 
						|
        there is pretty accurate initial estimation of the parameters and/or a huge number of
 | 
						|
        training samples. */
 | 
						|
        COV_MAT_GENERIC=2,
 | 
						|
        COV_MAT_DEFAULT=COV_MAT_DIAGONAL
 | 
						|
    };
 | 
						|
 | 
						|
    //! Default parameters
 | 
						|
    enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100};
 | 
						|
 | 
						|
    //! The initial step
 | 
						|
    enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};
 | 
						|
 | 
						|
    /** The number of mixture components in the Gaussian mixture model.
 | 
						|
    Default value of the parameter is EM::DEFAULT_NCLUSTERS=5. Some of %EM implementation could
 | 
						|
    determine the optimal number of mixtures within a specified value range, but that is not the
 | 
						|
    case in ML yet. */
 | 
						|
    /** @see setClustersNumber */
 | 
						|
    CV_WRAP virtual int getClustersNumber() const = 0;
 | 
						|
    /** @copybrief getClustersNumber @see getClustersNumber */
 | 
						|
    CV_WRAP virtual void setClustersNumber(int val) = 0;
 | 
						|
 | 
						|
    /** Constraint on covariance matrices which defines type of matrices.
 | 
						|
    See EM::Types. */
 | 
						|
    /** @see setCovarianceMatrixType */
 | 
						|
    CV_WRAP virtual int getCovarianceMatrixType() const = 0;
 | 
						|
    /** @copybrief getCovarianceMatrixType @see getCovarianceMatrixType */
 | 
						|
    CV_WRAP virtual void setCovarianceMatrixType(int val) = 0;
 | 
						|
 | 
						|
    /** The termination criteria of the %EM algorithm.
 | 
						|
    The %EM algorithm can be terminated by the number of iterations termCrit.maxCount (number of
 | 
						|
    M-steps) or when relative change of likelihood logarithm is less than termCrit.epsilon. Default
 | 
						|
    maximum number of iterations is EM::DEFAULT_MAX_ITERS=100. */
 | 
						|
    /** @see setTermCriteria */
 | 
						|
    CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
 | 
						|
    /** @copybrief getTermCriteria @see getTermCriteria */
 | 
						|
    CV_WRAP virtual void setTermCriteria(const TermCriteria &val) = 0;
 | 
						|
 | 
						|
    /** @brief Returns weights of the mixtures
 | 
						|
 | 
						|
    Returns vector with the number of elements equal to the number of mixtures.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual Mat getWeights() const = 0;
 | 
						|
    /** @brief Returns the cluster centers (means of the Gaussian mixture)
 | 
						|
 | 
						|
    Returns matrix with the number of rows equal to the number of mixtures and number of columns
 | 
						|
    equal to the space dimensionality.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual Mat getMeans() const = 0;
 | 
						|
    /** @brief Returns covariation matrices
 | 
						|
 | 
						|
    Returns vector of covariation matrices. Number of matrices is the number of gaussian mixtures,
 | 
						|
    each matrix is a square floating-point matrix NxN, where N is the space dimensionality.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual void getCovs(CV_OUT std::vector<Mat>& covs) const = 0;
 | 
						|
 | 
						|
    /** @brief Returns posterior probabilities for the provided samples
 | 
						|
 | 
						|
    @param samples The input samples, floating-point matrix
 | 
						|
    @param results The optional output \f$ nSamples \times nClusters\f$ matrix of results. It contains
 | 
						|
    posterior probabilities for each sample from the input
 | 
						|
    @param flags This parameter will be ignored
 | 
						|
     */
 | 
						|
    CV_WRAP virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const CV_OVERRIDE = 0;
 | 
						|
 | 
						|
    /** @brief Returns a likelihood logarithm value and an index of the most probable mixture component
 | 
						|
    for the given sample.
 | 
						|
 | 
						|
    @param sample A sample for classification. It should be a one-channel matrix of
 | 
						|
        \f$1 \times dims\f$ or \f$dims \times 1\f$ size.
 | 
						|
    @param probs Optional output matrix that contains posterior probabilities of each component
 | 
						|
        given the sample. It has \f$1 \times nclusters\f$ size and CV_64FC1 type.
 | 
						|
 | 
						|
    The method returns a two-element double vector. Zero element is a likelihood logarithm value for
 | 
						|
    the sample. First element is an index of the most probable mixture component for the given
 | 
						|
    sample.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual Vec2d predict2(InputArray sample, OutputArray probs) const = 0;
 | 
						|
 | 
						|
    /** @brief Estimate the Gaussian mixture parameters from a samples set.
 | 
						|
 | 
						|
    This variation starts with Expectation step. Initial values of the model parameters will be
 | 
						|
    estimated by the k-means algorithm.
 | 
						|
 | 
						|
    Unlike many of the ML models, %EM is an unsupervised learning algorithm and it does not take
 | 
						|
    responses (class labels or function values) as input. Instead, it computes the *Maximum
 | 
						|
    Likelihood Estimate* of the Gaussian mixture parameters from an input sample set, stores all the
 | 
						|
    parameters inside the structure: \f$p_{i,k}\f$ in probs, \f$a_k\f$ in means , \f$S_k\f$ in
 | 
						|
    covs[k], \f$\pi_k\f$ in weights , and optionally computes the output "class label" for each
 | 
						|
    sample: \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most
 | 
						|
    probable mixture component for each sample).
 | 
						|
 | 
						|
    The trained model can be used further for prediction, just like any other classifier. The
 | 
						|
    trained model is similar to the NormalBayesClassifier.
 | 
						|
 | 
						|
    @param samples Samples from which the Gaussian mixture model will be estimated. It should be a
 | 
						|
        one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
 | 
						|
        it will be converted to the inner matrix of such type for the further computing.
 | 
						|
    @param logLikelihoods The optional output matrix that contains a likelihood logarithm value for
 | 
						|
        each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.
 | 
						|
    @param labels The optional output "class label" for each sample:
 | 
						|
        \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable
 | 
						|
        mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.
 | 
						|
    @param probs The optional output matrix that contains posterior probabilities of each Gaussian
 | 
						|
        mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and
 | 
						|
        CV_64FC1 type.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual bool trainEM(InputArray samples,
 | 
						|
                         OutputArray logLikelihoods=noArray(),
 | 
						|
                         OutputArray labels=noArray(),
 | 
						|
                         OutputArray probs=noArray()) = 0;
 | 
						|
 | 
						|
    /** @brief Estimate the Gaussian mixture parameters from a samples set.
 | 
						|
 | 
						|
    This variation starts with Expectation step. You need to provide initial means \f$a_k\f$ of
 | 
						|
    mixture components. Optionally you can pass initial weights \f$\pi_k\f$ and covariance matrices
 | 
						|
    \f$S_k\f$ of mixture components.
 | 
						|
 | 
						|
    @param samples Samples from which the Gaussian mixture model will be estimated. It should be a
 | 
						|
        one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
 | 
						|
        it will be converted to the inner matrix of such type for the further computing.
 | 
						|
    @param means0 Initial means \f$a_k\f$ of mixture components. It is a one-channel matrix of
 | 
						|
        \f$nclusters \times dims\f$ size. If the matrix does not have CV_64F type it will be
 | 
						|
        converted to the inner matrix of such type for the further computing.
 | 
						|
    @param covs0 The vector of initial covariance matrices \f$S_k\f$ of mixture components. Each of
 | 
						|
        covariance matrices is a one-channel matrix of \f$dims \times dims\f$ size. If the matrices
 | 
						|
        do not have CV_64F type they will be converted to the inner matrices of such type for the
 | 
						|
        further computing.
 | 
						|
    @param weights0 Initial weights \f$\pi_k\f$ of mixture components. It should be a one-channel
 | 
						|
        floating-point matrix with \f$1 \times nclusters\f$ or \f$nclusters \times 1\f$ size.
 | 
						|
    @param logLikelihoods The optional output matrix that contains a likelihood logarithm value for
 | 
						|
        each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.
 | 
						|
    @param labels The optional output "class label" for each sample:
 | 
						|
        \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable
 | 
						|
        mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.
 | 
						|
    @param probs The optional output matrix that contains posterior probabilities of each Gaussian
 | 
						|
        mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and
 | 
						|
        CV_64FC1 type.
 | 
						|
    */
 | 
						|
    CV_WRAP virtual bool trainE(InputArray samples, InputArray means0,
 | 
						|
                        InputArray covs0=noArray(),
 | 
						|
                        InputArray weights0=noArray(),
 | 
						|
                        OutputArray logLikelihoods=noArray(),
 | 
						|
                        OutputArray labels=noArray(),
 | 
						|
                        OutputArray probs=noArray()) = 0;
 | 
						|
 | 
						|
    /** @brief Estimate the Gaussian mixture parameters from a samples set.
 | 
						|
 | 
						|
    This variation starts with Maximization step. You need to provide initial probabilities
 | 
						|
    \f$p_{i,k}\f$ to use this option.
 | 
						|
 | 
						|
    @param samples Samples from which the Gaussian mixture model will be estimated. It should be a
 | 
						|
        one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
 | 
						|
        it will be converted to the inner matrix of such type for the further computing.
 | 
						|
    @param probs0 the probabilities
 | 
						|
    @param logLikelihoods The optional output matrix that contains a likelihood logarithm value for
 | 
						|
        each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.
 | 
						|
    @param labels The optional output "class label" for each sample:
 | 
						|
        \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable
 | 
						|
        mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.
 | 
						|
    @param probs The optional output matrix that contains posterior probabilities of each Gaussian
 | 
						|
        mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and
 | 
						|
        CV_64FC1 type.
 | 
						|
    */
 | 
						|
    CV_WRAP virtual bool trainM(InputArray samples, InputArray probs0,
 | 
						|
                        OutputArray logLikelihoods=noArray(),
 | 
						|
                        OutputArray labels=noArray(),
 | 
						|
                        OutputArray probs=noArray()) = 0;
 | 
						|
 | 
						|
    /** Creates empty %EM model.
 | 
						|
    The model should be trained then using StatModel::train(traindata, flags) method. Alternatively, you
 | 
						|
    can use one of the EM::train\* methods or load it from file using Algorithm::load\<EM\>(filename).
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<EM> create();
 | 
						|
 | 
						|
    /** @brief Loads and creates a serialized EM from a file
 | 
						|
     *
 | 
						|
     * Use EM::save to serialize and store an EM to disk.
 | 
						|
     * Load the EM from this file again, by calling this function with the path to the file.
 | 
						|
     * Optionally specify the node for the file containing the classifier
 | 
						|
     *
 | 
						|
     * @param filepath path to serialized EM
 | 
						|
     * @param nodeName name of node containing the classifier
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<EM> load(const String& filepath , const String& nodeName = String());
 | 
						|
};
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                      Decision Tree                                     *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
/** @brief The class represents a single decision tree or a collection of decision trees.
 | 
						|
 | 
						|
The current public interface of the class allows user to train only a single decision tree, however
 | 
						|
the class is capable of storing multiple decision trees and using them for prediction (by summing
 | 
						|
responses or using a voting schemes), and the derived from DTrees classes (such as RTrees and Boost)
 | 
						|
use this capability to implement decision tree ensembles.
 | 
						|
 | 
						|
@sa @ref ml_intro_trees
 | 
						|
*/
 | 
						|
class CV_EXPORTS_W DTrees : public StatModel
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** Predict options */
 | 
						|
    enum Flags { PREDICT_AUTO=0, PREDICT_SUM=(1<<8), PREDICT_MAX_VOTE=(2<<8), PREDICT_MASK=(3<<8) };
 | 
						|
 | 
						|
    /** Cluster possible values of a categorical variable into K\<=maxCategories clusters to
 | 
						|
    find a suboptimal split.
 | 
						|
    If a discrete variable, on which the training procedure tries to make a split, takes more than
 | 
						|
    maxCategories values, the precise best subset estimation may take a very long time because the
 | 
						|
    algorithm is exponential. Instead, many decision trees engines (including our implementation)
 | 
						|
    try to find sub-optimal split in this case by clustering all the samples into maxCategories
 | 
						|
    clusters that is some categories are merged together. The clustering is applied only in n \>
 | 
						|
    2-class classification problems for categorical variables with N \> max_categories possible
 | 
						|
    values. In case of regression and 2-class classification the optimal split can be found
 | 
						|
    efficiently without employing clustering, thus the parameter is not used in these cases.
 | 
						|
    Default value is 10.*/
 | 
						|
    /** @see setMaxCategories */
 | 
						|
    CV_WRAP virtual int getMaxCategories() const = 0;
 | 
						|
    /** @copybrief getMaxCategories @see getMaxCategories */
 | 
						|
    CV_WRAP virtual void setMaxCategories(int val) = 0;
 | 
						|
 | 
						|
    /** The maximum possible depth of the tree.
 | 
						|
    That is the training algorithms attempts to split a node while its depth is less than maxDepth.
 | 
						|
    The root node has zero depth. The actual depth may be smaller if the other termination criteria
 | 
						|
    are met (see the outline of the training procedure @ref ml_intro_trees "here"), and/or if the
 | 
						|
    tree is pruned. Default value is INT_MAX.*/
 | 
						|
    /** @see setMaxDepth */
 | 
						|
    CV_WRAP virtual int getMaxDepth() const = 0;
 | 
						|
    /** @copybrief getMaxDepth @see getMaxDepth */
 | 
						|
    CV_WRAP virtual void setMaxDepth(int val) = 0;
 | 
						|
 | 
						|
    /** If the number of samples in a node is less than this parameter then the node will not be split.
 | 
						|
 | 
						|
    Default value is 10.*/
 | 
						|
    /** @see setMinSampleCount */
 | 
						|
    CV_WRAP virtual int getMinSampleCount() const = 0;
 | 
						|
    /** @copybrief getMinSampleCount @see getMinSampleCount */
 | 
						|
    CV_WRAP virtual void setMinSampleCount(int val) = 0;
 | 
						|
 | 
						|
    /** If CVFolds \> 1 then algorithms prunes the built decision tree using K-fold
 | 
						|
    cross-validation procedure where K is equal to CVFolds.
 | 
						|
    Default value is 10.*/
 | 
						|
    /** @see setCVFolds */
 | 
						|
    CV_WRAP virtual int getCVFolds() const = 0;
 | 
						|
    /** @copybrief getCVFolds @see getCVFolds */
 | 
						|
    CV_WRAP virtual void setCVFolds(int val) = 0;
 | 
						|
 | 
						|
    /** If true then surrogate splits will be built.
 | 
						|
    These splits allow to work with missing data and compute variable importance correctly.
 | 
						|
    Default value is false.
 | 
						|
    @note currently it's not implemented.*/
 | 
						|
    /** @see setUseSurrogates */
 | 
						|
    CV_WRAP virtual bool getUseSurrogates() const = 0;
 | 
						|
    /** @copybrief getUseSurrogates @see getUseSurrogates */
 | 
						|
    CV_WRAP virtual void setUseSurrogates(bool val) = 0;
 | 
						|
 | 
						|
    /** If true then a pruning will be harsher.
 | 
						|
    This will make a tree more compact and more resistant to the training data noise but a bit less
 | 
						|
    accurate. Default value is true.*/
 | 
						|
    /** @see setUse1SERule */
 | 
						|
    CV_WRAP virtual bool getUse1SERule() const = 0;
 | 
						|
    /** @copybrief getUse1SERule @see getUse1SERule */
 | 
						|
    CV_WRAP virtual void setUse1SERule(bool val) = 0;
 | 
						|
 | 
						|
    /** If true then pruned branches are physically removed from the tree.
 | 
						|
    Otherwise they are retained and it is possible to get results from the original unpruned (or
 | 
						|
    pruned less aggressively) tree. Default value is true.*/
 | 
						|
    /** @see setTruncatePrunedTree */
 | 
						|
    CV_WRAP virtual bool getTruncatePrunedTree() const = 0;
 | 
						|
    /** @copybrief getTruncatePrunedTree @see getTruncatePrunedTree */
 | 
						|
    CV_WRAP virtual void setTruncatePrunedTree(bool val) = 0;
 | 
						|
 | 
						|
    /** Termination criteria for regression trees.
 | 
						|
    If all absolute differences between an estimated value in a node and values of train samples
 | 
						|
    in this node are less than this parameter then the node will not be split further. Default
 | 
						|
    value is 0.01f*/
 | 
						|
    /** @see setRegressionAccuracy */
 | 
						|
    CV_WRAP virtual float getRegressionAccuracy() const = 0;
 | 
						|
    /** @copybrief getRegressionAccuracy @see getRegressionAccuracy */
 | 
						|
    CV_WRAP virtual void setRegressionAccuracy(float val) = 0;
 | 
						|
 | 
						|
    /** @brief The array of a priori class probabilities, sorted by the class label value.
 | 
						|
 | 
						|
    The parameter can be used to tune the decision tree preferences toward a certain class. For
 | 
						|
    example, if you want to detect some rare anomaly occurrence, the training base will likely
 | 
						|
    contain much more normal cases than anomalies, so a very good classification performance
 | 
						|
    will be achieved just by considering every case as normal. To avoid this, the priors can be
 | 
						|
    specified, where the anomaly probability is artificially increased (up to 0.5 or even
 | 
						|
    greater), so the weight of the misclassified anomalies becomes much bigger, and the tree is
 | 
						|
    adjusted properly.
 | 
						|
 | 
						|
    You can also think about this parameter as weights of prediction categories which determine
 | 
						|
    relative weights that you give to misclassification. That is, if the weight of the first
 | 
						|
    category is 1 and the weight of the second category is 10, then each mistake in predicting
 | 
						|
    the second category is equivalent to making 10 mistakes in predicting the first category.
 | 
						|
    Default value is empty Mat.*/
 | 
						|
    /** @see setPriors */
 | 
						|
    CV_WRAP virtual cv::Mat getPriors() const = 0;
 | 
						|
    /** @copybrief getPriors @see getPriors */
 | 
						|
    CV_WRAP virtual void setPriors(const cv::Mat &val) = 0;
 | 
						|
 | 
						|
    /** @brief The class represents a decision tree node.
 | 
						|
     */
 | 
						|
    class CV_EXPORTS Node
 | 
						|
    {
 | 
						|
    public:
 | 
						|
        Node();
 | 
						|
        double value; //!< Value at the node: a class label in case of classification or estimated
 | 
						|
                      //!< function value in case of regression.
 | 
						|
        int classIdx; //!< Class index normalized to 0..class_count-1 range and assigned to the
 | 
						|
                      //!< node. It is used internally in classification trees and tree ensembles.
 | 
						|
        int parent; //!< Index of the parent node
 | 
						|
        int left; //!< Index of the left child node
 | 
						|
        int right; //!< Index of right child node
 | 
						|
        int defaultDir; //!< Default direction where to go (-1: left or +1: right). It helps in the
 | 
						|
                        //!< case of missing values.
 | 
						|
        int split; //!< Index of the first split
 | 
						|
    };
 | 
						|
 | 
						|
    /** @brief The class represents split in a decision tree.
 | 
						|
     */
 | 
						|
    class CV_EXPORTS Split
 | 
						|
    {
 | 
						|
    public:
 | 
						|
        Split();
 | 
						|
        int varIdx; //!< Index of variable on which the split is created.
 | 
						|
        bool inversed; //!< If true, then the inverse split rule is used (i.e. left and right
 | 
						|
                       //!< branches are exchanged in the rule expressions below).
 | 
						|
        float quality; //!< The split quality, a positive number. It is used to choose the best split.
 | 
						|
        int next; //!< Index of the next split in the list of splits for the node
 | 
						|
        float c; /**< The threshold value in case of split on an ordered variable.
 | 
						|
                      The rule is:
 | 
						|
                      @code{.none}
 | 
						|
                      if var_value < c
 | 
						|
                        then next_node <- left
 | 
						|
                        else next_node <- right
 | 
						|
                      @endcode */
 | 
						|
        int subsetOfs; /**< Offset of the bitset used by the split on a categorical variable.
 | 
						|
                            The rule is:
 | 
						|
                            @code{.none}
 | 
						|
                            if bitset[var_value] == 1
 | 
						|
                                then next_node <- left
 | 
						|
                                else next_node <- right
 | 
						|
                            @endcode */
 | 
						|
    };
 | 
						|
 | 
						|
    /** @brief Returns indices of root nodes
 | 
						|
    */
 | 
						|
    virtual const std::vector<int>& getRoots() const = 0;
 | 
						|
    /** @brief Returns all the nodes
 | 
						|
 | 
						|
    all the node indices are indices in the returned vector
 | 
						|
     */
 | 
						|
    virtual const std::vector<Node>& getNodes() const = 0;
 | 
						|
    /** @brief Returns all the splits
 | 
						|
 | 
						|
    all the split indices are indices in the returned vector
 | 
						|
     */
 | 
						|
    virtual const std::vector<Split>& getSplits() const = 0;
 | 
						|
    /** @brief Returns all the bitsets for categorical splits
 | 
						|
 | 
						|
    Split::subsetOfs is an offset in the returned vector
 | 
						|
     */
 | 
						|
    virtual const std::vector<int>& getSubsets() const = 0;
 | 
						|
 | 
						|
    /** @brief Creates the empty model
 | 
						|
 | 
						|
    The static method creates empty decision tree with the specified parameters. It should be then
 | 
						|
    trained using train method (see StatModel::train). Alternatively, you can load the model from
 | 
						|
    file using Algorithm::load\<DTrees\>(filename).
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<DTrees> create();
 | 
						|
 | 
						|
    /** @brief Loads and creates a serialized DTrees from a file
 | 
						|
     *
 | 
						|
     * Use DTree::save to serialize and store an DTree to disk.
 | 
						|
     * Load the DTree from this file again, by calling this function with the path to the file.
 | 
						|
     * Optionally specify the node for the file containing the classifier
 | 
						|
     *
 | 
						|
     * @param filepath path to serialized DTree
 | 
						|
     * @param nodeName name of node containing the classifier
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<DTrees> load(const String& filepath , const String& nodeName = String());
 | 
						|
};
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                   Random Trees Classifier                              *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
/** @brief The class implements the random forest predictor.
 | 
						|
 | 
						|
@sa @ref ml_intro_rtrees
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W RTrees : public DTrees
 | 
						|
{
 | 
						|
public:
 | 
						|
 | 
						|
    /** If true then variable importance will be calculated and then it can be retrieved by RTrees::getVarImportance.
 | 
						|
    Default value is false.*/
 | 
						|
    /** @see setCalculateVarImportance */
 | 
						|
    CV_WRAP virtual bool getCalculateVarImportance() const = 0;
 | 
						|
    /** @copybrief getCalculateVarImportance @see getCalculateVarImportance */
 | 
						|
    CV_WRAP virtual void setCalculateVarImportance(bool val) = 0;
 | 
						|
 | 
						|
    /** The size of the randomly selected subset of features at each tree node and that are used
 | 
						|
    to find the best split(s).
 | 
						|
    If you set it to 0 then the size will be set to the square root of the total number of
 | 
						|
    features. Default value is 0.*/
 | 
						|
    /** @see setActiveVarCount */
 | 
						|
    CV_WRAP virtual int getActiveVarCount() const = 0;
 | 
						|
    /** @copybrief getActiveVarCount @see getActiveVarCount */
 | 
						|
    CV_WRAP virtual void setActiveVarCount(int val) = 0;
 | 
						|
 | 
						|
    /** The termination criteria that specifies when the training algorithm stops.
 | 
						|
    Either when the specified number of trees is trained and added to the ensemble or when
 | 
						|
    sufficient accuracy (measured as OOB error) is achieved. Typically the more trees you have the
 | 
						|
    better the accuracy. However, the improvement in accuracy generally diminishes and asymptotes
 | 
						|
    pass a certain number of trees. Also to keep in mind, the number of tree increases the
 | 
						|
    prediction time linearly. Default value is TermCriteria(TermCriteria::MAX_ITERS +
 | 
						|
    TermCriteria::EPS, 50, 0.1)*/
 | 
						|
    /** @see setTermCriteria */
 | 
						|
    CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
 | 
						|
    /** @copybrief getTermCriteria @see getTermCriteria */
 | 
						|
    CV_WRAP virtual void setTermCriteria(const TermCriteria &val) = 0;
 | 
						|
 | 
						|
    /** Returns the variable importance array.
 | 
						|
    The method returns the variable importance vector, computed at the training stage when
 | 
						|
    CalculateVarImportance is set to true. If this flag was set to false, the empty matrix is
 | 
						|
    returned.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual Mat getVarImportance() const = 0;
 | 
						|
 | 
						|
    /** Returns the result of each individual tree in the forest.
 | 
						|
    In case the model is a regression problem, the method will return each of the trees'
 | 
						|
    results for each of the sample cases. If the model is a classifier, it will return
 | 
						|
    a Mat with samples + 1 rows, where the first row gives the class number and the
 | 
						|
    following rows return the votes each class had for each sample.
 | 
						|
        @param samples Array containing the samples for which votes will be calculated.
 | 
						|
        @param results Array where the result of the calculation will be written.
 | 
						|
        @param flags Flags for defining the type of RTrees.
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void getVotes(InputArray samples, OutputArray results, int flags) const = 0;
 | 
						|
 | 
						|
    /** Returns the OOB error value, computed at the training stage when calcOOBError is set to true.
 | 
						|
     * If this flag was set to false, 0 is returned. The OOB error is also scaled by sample weighting.
 | 
						|
     */
 | 
						|
#if CV_VERSION_MAJOR == 4
 | 
						|
    CV_WRAP virtual double getOOBError() const { return 0; }
 | 
						|
#else
 | 
						|
    /*CV_WRAP*/ virtual double getOOBError() const = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
    /** Creates the empty model.
 | 
						|
    Use StatModel::train to train the model, StatModel::train to create and train the model,
 | 
						|
    Algorithm::load to load the pre-trained model.
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<RTrees> create();
 | 
						|
 | 
						|
    /** @brief Loads and creates a serialized RTree from a file
 | 
						|
     *
 | 
						|
     * Use RTree::save to serialize and store an RTree to disk.
 | 
						|
     * Load the RTree from this file again, by calling this function with the path to the file.
 | 
						|
     * Optionally specify the node for the file containing the classifier
 | 
						|
     *
 | 
						|
     * @param filepath path to serialized RTree
 | 
						|
     * @param nodeName name of node containing the classifier
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<RTrees> load(const String& filepath , const String& nodeName = String());
 | 
						|
};
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                   Boosted tree classifier                              *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
/** @brief Boosted tree classifier derived from DTrees
 | 
						|
 | 
						|
@sa @ref ml_intro_boost
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W Boost : public DTrees
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** Type of the boosting algorithm.
 | 
						|
    See Boost::Types. Default value is Boost::REAL. */
 | 
						|
    /** @see setBoostType */
 | 
						|
    CV_WRAP virtual int getBoostType() const = 0;
 | 
						|
    /** @copybrief getBoostType @see getBoostType */
 | 
						|
    CV_WRAP virtual void setBoostType(int val) = 0;
 | 
						|
 | 
						|
    /** The number of weak classifiers.
 | 
						|
    Default value is 100. */
 | 
						|
    /** @see setWeakCount */
 | 
						|
    CV_WRAP virtual int getWeakCount() const = 0;
 | 
						|
    /** @copybrief getWeakCount @see getWeakCount */
 | 
						|
    CV_WRAP virtual void setWeakCount(int val) = 0;
 | 
						|
 | 
						|
    /** A threshold between 0 and 1 used to save computational time.
 | 
						|
    Samples with summary weight \f$\leq 1 - weight_trim_rate\f$ do not participate in the *next*
 | 
						|
    iteration of training. Set this parameter to 0 to turn off this functionality. Default value is 0.95.*/
 | 
						|
    /** @see setWeightTrimRate */
 | 
						|
    CV_WRAP virtual double getWeightTrimRate() const = 0;
 | 
						|
    /** @copybrief getWeightTrimRate @see getWeightTrimRate */
 | 
						|
    CV_WRAP virtual void setWeightTrimRate(double val) = 0;
 | 
						|
 | 
						|
    /** Boosting type.
 | 
						|
    Gentle AdaBoost and Real AdaBoost are often the preferable choices. */
 | 
						|
    enum Types {
 | 
						|
        DISCRETE=0, //!< Discrete AdaBoost.
 | 
						|
        REAL=1, //!< Real AdaBoost. It is a technique that utilizes confidence-rated predictions
 | 
						|
                //!< and works well with categorical data.
 | 
						|
        LOGIT=2, //!< LogitBoost. It can produce good regression fits.
 | 
						|
        GENTLE=3 //!< Gentle AdaBoost. It puts less weight on outlier data points and for that
 | 
						|
                 //!<reason is often good with regression data.
 | 
						|
    };
 | 
						|
 | 
						|
    /** Creates the empty model.
 | 
						|
    Use StatModel::train to train the model, Algorithm::load\<Boost\>(filename) to load the pre-trained model. */
 | 
						|
    CV_WRAP static Ptr<Boost> create();
 | 
						|
 | 
						|
    /** @brief Loads and creates a serialized Boost from a file
 | 
						|
     *
 | 
						|
     * Use Boost::save to serialize and store an RTree to disk.
 | 
						|
     * Load the Boost from this file again, by calling this function with the path to the file.
 | 
						|
     * Optionally specify the node for the file containing the classifier
 | 
						|
     *
 | 
						|
     * @param filepath path to serialized Boost
 | 
						|
     * @param nodeName name of node containing the classifier
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<Boost> load(const String& filepath , const String& nodeName = String());
 | 
						|
};
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                   Gradient Boosted Trees                               *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
/*class CV_EXPORTS_W GBTrees : public DTrees
 | 
						|
{
 | 
						|
public:
 | 
						|
    struct CV_EXPORTS_W_MAP Params : public DTrees::Params
 | 
						|
    {
 | 
						|
        CV_PROP_RW int weakCount;
 | 
						|
        CV_PROP_RW int lossFunctionType;
 | 
						|
        CV_PROP_RW float subsamplePortion;
 | 
						|
        CV_PROP_RW float shrinkage;
 | 
						|
 | 
						|
        Params();
 | 
						|
        Params( int lossFunctionType, int weakCount, float shrinkage,
 | 
						|
                float subsamplePortion, int maxDepth, bool useSurrogates );
 | 
						|
    };
 | 
						|
 | 
						|
    enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS};
 | 
						|
 | 
						|
    virtual void setK(int k) = 0;
 | 
						|
 | 
						|
    virtual float predictSerial( InputArray samples,
 | 
						|
                                 OutputArray weakResponses, int flags) const = 0;
 | 
						|
 | 
						|
    static Ptr<GBTrees> create(const Params& p);
 | 
						|
};*/
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                              Artificial Neural Networks (ANN)                          *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
/////////////////////////////////// Multi-Layer Perceptrons //////////////////////////////
 | 
						|
 | 
						|
/** @brief Artificial Neural Networks - Multi-Layer Perceptrons.
 | 
						|
 | 
						|
Unlike many other models in ML that are constructed and trained at once, in the MLP model these
 | 
						|
steps are separated. First, a network with the specified topology is created using the non-default
 | 
						|
constructor or the method ANN_MLP::create. All the weights are set to zeros. Then, the network is
 | 
						|
trained using a set of input and output vectors. The training procedure can be repeated more than
 | 
						|
once, that is, the weights can be adjusted based on the new training data.
 | 
						|
 | 
						|
Additional flags for StatModel::train are available: ANN_MLP::TrainFlags.
 | 
						|
 | 
						|
@sa @ref ml_intro_ann
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W ANN_MLP : public StatModel
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** Available training methods */
 | 
						|
    enum TrainingMethods {
 | 
						|
        BACKPROP=0, //!< The back-propagation algorithm.
 | 
						|
        RPROP = 1, //!< The RPROP algorithm. See @cite RPROP93 for details.
 | 
						|
        ANNEAL = 2 //!< The simulated annealing algorithm. See @cite Kirkpatrick83 for details.
 | 
						|
    };
 | 
						|
 | 
						|
    /** Sets training method and common parameters.
 | 
						|
    @param method Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods.
 | 
						|
    @param param1 passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP and to initialT for ANN_MLP::ANNEAL.
 | 
						|
    @param param2 passed to setRpropDWMin for ANN_MLP::RPROP and to setBackpropMomentumScale for ANN_MLP::BACKPROP and to finalT for ANN_MLP::ANNEAL.
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void setTrainMethod(int method, double param1 = 0, double param2 = 0) = 0;
 | 
						|
 | 
						|
    /** Returns current training method */
 | 
						|
    CV_WRAP virtual int getTrainMethod() const = 0;
 | 
						|
 | 
						|
    /** Initialize the activation function for each neuron.
 | 
						|
    Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM.
 | 
						|
    @param type The type of activation function. See ANN_MLP::ActivationFunctions.
 | 
						|
    @param param1 The first parameter of the activation function, \f$\alpha\f$. Default value is 0.
 | 
						|
    @param param2 The second parameter of the activation function, \f$\beta\f$. Default value is 0.
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void setActivationFunction(int type, double param1 = 0, double param2 = 0) = 0;
 | 
						|
 | 
						|
    /**  Integer vector specifying the number of neurons in each layer including the input and output layers.
 | 
						|
    The very first element specifies the number of elements in the input layer.
 | 
						|
    The last element - number of elements in the output layer. Default value is empty Mat.
 | 
						|
    @sa getLayerSizes */
 | 
						|
    CV_WRAP virtual void setLayerSizes(InputArray _layer_sizes) = 0;
 | 
						|
 | 
						|
    /**  Integer vector specifying the number of neurons in each layer including the input and output layers.
 | 
						|
    The very first element specifies the number of elements in the input layer.
 | 
						|
    The last element - number of elements in the output layer.
 | 
						|
    @sa setLayerSizes */
 | 
						|
    CV_WRAP virtual cv::Mat getLayerSizes() const = 0;
 | 
						|
 | 
						|
    /** Termination criteria of the training algorithm.
 | 
						|
    You can specify the maximum number of iterations (maxCount) and/or how much the error could
 | 
						|
    change between the iterations to make the algorithm continue (epsilon). Default value is
 | 
						|
    TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, 0.01).*/
 | 
						|
    /** @see setTermCriteria */
 | 
						|
    CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
 | 
						|
    /** @copybrief getTermCriteria @see getTermCriteria */
 | 
						|
    CV_WRAP virtual void setTermCriteria(TermCriteria val) = 0;
 | 
						|
 | 
						|
    /** BPROP: Strength of the weight gradient term.
 | 
						|
    The recommended value is about 0.1. Default value is 0.1.*/
 | 
						|
    /** @see setBackpropWeightScale */
 | 
						|
    CV_WRAP virtual double getBackpropWeightScale() const = 0;
 | 
						|
    /** @copybrief getBackpropWeightScale @see getBackpropWeightScale */
 | 
						|
    CV_WRAP virtual void setBackpropWeightScale(double val) = 0;
 | 
						|
 | 
						|
    /** BPROP: Strength of the momentum term (the difference between weights on the 2 previous iterations).
 | 
						|
    This parameter provides some inertia to smooth the random fluctuations of the weights. It can
 | 
						|
    vary from 0 (the feature is disabled) to 1 and beyond. The value 0.1 or so is good enough.
 | 
						|
    Default value is 0.1.*/
 | 
						|
    /** @see setBackpropMomentumScale */
 | 
						|
    CV_WRAP virtual double getBackpropMomentumScale() const = 0;
 | 
						|
    /** @copybrief getBackpropMomentumScale @see getBackpropMomentumScale */
 | 
						|
    CV_WRAP virtual void setBackpropMomentumScale(double val) = 0;
 | 
						|
 | 
						|
    /** RPROP: Initial value \f$\Delta_0\f$ of update-values \f$\Delta_{ij}\f$.
 | 
						|
    Default value is 0.1.*/
 | 
						|
    /** @see setRpropDW0 */
 | 
						|
    CV_WRAP virtual double getRpropDW0() const = 0;
 | 
						|
    /** @copybrief getRpropDW0 @see getRpropDW0 */
 | 
						|
    CV_WRAP virtual void setRpropDW0(double val) = 0;
 | 
						|
 | 
						|
    /** RPROP: Increase factor \f$\eta^+\f$.
 | 
						|
    It must be \>1. Default value is 1.2.*/
 | 
						|
    /** @see setRpropDWPlus */
 | 
						|
    CV_WRAP virtual double getRpropDWPlus() const = 0;
 | 
						|
    /** @copybrief getRpropDWPlus @see getRpropDWPlus */
 | 
						|
    CV_WRAP virtual void setRpropDWPlus(double val) = 0;
 | 
						|
 | 
						|
    /** RPROP: Decrease factor \f$\eta^-\f$.
 | 
						|
    It must be \<1. Default value is 0.5.*/
 | 
						|
    /** @see setRpropDWMinus */
 | 
						|
    CV_WRAP virtual double getRpropDWMinus() const = 0;
 | 
						|
    /** @copybrief getRpropDWMinus @see getRpropDWMinus */
 | 
						|
    CV_WRAP virtual void setRpropDWMinus(double val) = 0;
 | 
						|
 | 
						|
    /** RPROP: Update-values lower limit \f$\Delta_{min}\f$.
 | 
						|
    It must be positive. Default value is FLT_EPSILON.*/
 | 
						|
    /** @see setRpropDWMin */
 | 
						|
    CV_WRAP virtual double getRpropDWMin() const = 0;
 | 
						|
    /** @copybrief getRpropDWMin @see getRpropDWMin */
 | 
						|
    CV_WRAP virtual void setRpropDWMin(double val) = 0;
 | 
						|
 | 
						|
    /** RPROP: Update-values upper limit \f$\Delta_{max}\f$.
 | 
						|
    It must be \>1. Default value is 50.*/
 | 
						|
    /** @see setRpropDWMax */
 | 
						|
    CV_WRAP virtual double getRpropDWMax() const = 0;
 | 
						|
    /** @copybrief getRpropDWMax @see getRpropDWMax */
 | 
						|
    CV_WRAP virtual void setRpropDWMax(double val) = 0;
 | 
						|
 | 
						|
    /** ANNEAL: Update initial temperature.
 | 
						|
    It must be \>=0. Default value is 10.*/
 | 
						|
    /** @see setAnnealInitialT */
 | 
						|
    CV_WRAP virtual double getAnnealInitialT() const = 0;
 | 
						|
    /** @copybrief getAnnealInitialT @see getAnnealInitialT */
 | 
						|
    CV_WRAP virtual void setAnnealInitialT(double val) = 0;
 | 
						|
 | 
						|
    /** ANNEAL: Update final temperature.
 | 
						|
    It must be \>=0 and less than initialT. Default value is 0.1.*/
 | 
						|
    /** @see setAnnealFinalT */
 | 
						|
    CV_WRAP virtual double getAnnealFinalT() const = 0;
 | 
						|
    /** @copybrief getAnnealFinalT @see getAnnealFinalT */
 | 
						|
    CV_WRAP virtual void setAnnealFinalT(double val) = 0;
 | 
						|
 | 
						|
    /** ANNEAL: Update cooling ratio.
 | 
						|
    It must be \>0 and less than 1. Default value is 0.95.*/
 | 
						|
    /** @see setAnnealCoolingRatio */
 | 
						|
    CV_WRAP virtual double getAnnealCoolingRatio() const = 0;
 | 
						|
    /** @copybrief getAnnealCoolingRatio @see getAnnealCoolingRatio */
 | 
						|
    CV_WRAP virtual void setAnnealCoolingRatio(double val) = 0;
 | 
						|
 | 
						|
    /** ANNEAL: Update iteration per step.
 | 
						|
    It must be \>0 . Default value is 10.*/
 | 
						|
    /** @see setAnnealItePerStep */
 | 
						|
    CV_WRAP virtual int getAnnealItePerStep() const = 0;
 | 
						|
    /** @copybrief getAnnealItePerStep @see getAnnealItePerStep */
 | 
						|
    CV_WRAP virtual void setAnnealItePerStep(int val) = 0;
 | 
						|
 | 
						|
    /** @brief Set/initialize anneal RNG */
 | 
						|
    virtual void setAnnealEnergyRNG(const RNG& rng) = 0;
 | 
						|
 | 
						|
    /** possible activation functions */
 | 
						|
    enum ActivationFunctions {
 | 
						|
        /** Identity function: \f$f(x)=x\f$ */
 | 
						|
        IDENTITY = 0,
 | 
						|
        /** Symmetrical sigmoid: \f$f(x)=\beta*(1-e^{-\alpha x})/(1+e^{-\alpha x})\f$
 | 
						|
        @note
 | 
						|
        If you are using the default sigmoid activation function with the default parameter values
 | 
						|
        fparam1=0 and fparam2=0 then the function used is y = 1.7159\*tanh(2/3 \* x), so the output
 | 
						|
        will range from [-1.7159, 1.7159], instead of [0,1].*/
 | 
						|
        SIGMOID_SYM = 1,
 | 
						|
        /** Gaussian function: \f$f(x)=\beta e^{-\alpha x*x}\f$ */
 | 
						|
        GAUSSIAN = 2,
 | 
						|
        /** ReLU function: \f$f(x)=max(0,x)\f$ */
 | 
						|
        RELU = 3,
 | 
						|
        /** Leaky ReLU function: for x>0 \f$f(x)=x \f$ and x<=0 \f$f(x)=\alpha x \f$*/
 | 
						|
        LEAKYRELU= 4
 | 
						|
    };
 | 
						|
 | 
						|
    /** Train options */
 | 
						|
    enum TrainFlags {
 | 
						|
        /** Update the network weights, rather than compute them from scratch. In the latter case
 | 
						|
        the weights are initialized using the Nguyen-Widrow algorithm. */
 | 
						|
        UPDATE_WEIGHTS = 1,
 | 
						|
        /** Do not normalize the input vectors. If this flag is not set, the training algorithm
 | 
						|
        normalizes each input feature independently, shifting its mean value to 0 and making the
 | 
						|
        standard deviation equal to 1. If the network is assumed to be updated frequently, the new
 | 
						|
        training data could be much different from original one. In this case, you should take care
 | 
						|
        of proper normalization. */
 | 
						|
        NO_INPUT_SCALE = 2,
 | 
						|
        /** Do not normalize the output vectors. If the flag is not set, the training algorithm
 | 
						|
        normalizes each output feature independently, by transforming it to the certain range
 | 
						|
        depending on the used activation function. */
 | 
						|
        NO_OUTPUT_SCALE = 4
 | 
						|
    };
 | 
						|
 | 
						|
    CV_WRAP virtual Mat getWeights(int layerIdx) const = 0;
 | 
						|
 | 
						|
    /** @brief Creates empty model
 | 
						|
 | 
						|
    Use StatModel::train to train the model, Algorithm::load\<ANN_MLP\>(filename) to load the pre-trained model.
 | 
						|
    Note that the train method has optional flags: ANN_MLP::TrainFlags.
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<ANN_MLP> create();
 | 
						|
 | 
						|
    /** @brief Loads and creates a serialized ANN from a file
 | 
						|
     *
 | 
						|
     * Use ANN::save to serialize and store an ANN to disk.
 | 
						|
     * Load the ANN from this file again, by calling this function with the path to the file.
 | 
						|
     *
 | 
						|
     * @param filepath path to serialized ANN
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<ANN_MLP> load(const String& filepath);
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
#ifndef DISABLE_OPENCV_3_COMPATIBILITY
 | 
						|
typedef ANN_MLP ANN_MLP_ANNEAL;
 | 
						|
#endif
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                           Logistic Regression                                          *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
/** @brief Implements Logistic Regression classifier.
 | 
						|
 | 
						|
@sa @ref ml_intro_lr
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W LogisticRegression : public StatModel
 | 
						|
{
 | 
						|
public:
 | 
						|
 | 
						|
    /** Learning rate. */
 | 
						|
    /** @see setLearningRate */
 | 
						|
    CV_WRAP virtual double getLearningRate() const = 0;
 | 
						|
    /** @copybrief getLearningRate @see getLearningRate */
 | 
						|
    CV_WRAP virtual void setLearningRate(double val) = 0;
 | 
						|
 | 
						|
    /** Number of iterations. */
 | 
						|
    /** @see setIterations */
 | 
						|
    CV_WRAP virtual int getIterations() const = 0;
 | 
						|
    /** @copybrief getIterations @see getIterations */
 | 
						|
    CV_WRAP virtual void setIterations(int val) = 0;
 | 
						|
 | 
						|
    /** Kind of regularization to be applied. See LogisticRegression::RegKinds. */
 | 
						|
    /** @see setRegularization */
 | 
						|
    CV_WRAP virtual int getRegularization() const = 0;
 | 
						|
    /** @copybrief getRegularization @see getRegularization */
 | 
						|
    CV_WRAP virtual void setRegularization(int val) = 0;
 | 
						|
 | 
						|
    /** Kind of training method used. See LogisticRegression::Methods. */
 | 
						|
    /** @see setTrainMethod */
 | 
						|
    CV_WRAP virtual int getTrainMethod() const = 0;
 | 
						|
    /** @copybrief getTrainMethod @see getTrainMethod */
 | 
						|
    CV_WRAP virtual void setTrainMethod(int val) = 0;
 | 
						|
 | 
						|
    /** Specifies the number of training samples taken in each step of Mini-Batch Gradient
 | 
						|
    Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm. It
 | 
						|
    has to take values less than the total number of training samples. */
 | 
						|
    /** @see setMiniBatchSize */
 | 
						|
    CV_WRAP virtual int getMiniBatchSize() const = 0;
 | 
						|
    /** @copybrief getMiniBatchSize @see getMiniBatchSize */
 | 
						|
    CV_WRAP virtual void setMiniBatchSize(int val) = 0;
 | 
						|
 | 
						|
    /** Termination criteria of the algorithm. */
 | 
						|
    /** @see setTermCriteria */
 | 
						|
    CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
 | 
						|
    /** @copybrief getTermCriteria @see getTermCriteria */
 | 
						|
    CV_WRAP virtual void setTermCriteria(TermCriteria val) = 0;
 | 
						|
 | 
						|
    //! Regularization kinds
 | 
						|
    enum RegKinds {
 | 
						|
        REG_DISABLE = -1, //!< Regularization disabled
 | 
						|
        REG_L1 = 0, //!< %L1 norm
 | 
						|
        REG_L2 = 1 //!< %L2 norm
 | 
						|
    };
 | 
						|
 | 
						|
    //! Training methods
 | 
						|
    enum Methods {
 | 
						|
        BATCH = 0,
 | 
						|
        MINI_BATCH = 1 //!< Set MiniBatchSize to a positive integer when using this method.
 | 
						|
    };
 | 
						|
 | 
						|
    /** @brief Predicts responses for input samples and returns a float type.
 | 
						|
 | 
						|
    @param samples The input data for the prediction algorithm. Matrix [m x n], where each row
 | 
						|
        contains variables (features) of one object being classified. Should have data type CV_32F.
 | 
						|
    @param results Predicted labels as a column matrix of type CV_32S.
 | 
						|
    @param flags Not used.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const CV_OVERRIDE = 0;
 | 
						|
 | 
						|
    /** @brief This function returns the trained parameters arranged across rows.
 | 
						|
 | 
						|
    For a two class classification problem, it returns a row matrix. It returns learnt parameters of
 | 
						|
    the Logistic Regression as a matrix of type CV_32F.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual Mat get_learnt_thetas() const = 0;
 | 
						|
 | 
						|
    /** @brief Creates empty model.
 | 
						|
 | 
						|
    Creates Logistic Regression model with parameters given.
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<LogisticRegression> create();
 | 
						|
 | 
						|
    /** @brief Loads and creates a serialized LogisticRegression from a file
 | 
						|
     *
 | 
						|
     * Use LogisticRegression::save to serialize and store an LogisticRegression to disk.
 | 
						|
     * Load the LogisticRegression from this file again, by calling this function with the path to the file.
 | 
						|
     * Optionally specify the node for the file containing the classifier
 | 
						|
     *
 | 
						|
     * @param filepath path to serialized LogisticRegression
 | 
						|
     * @param nodeName name of node containing the classifier
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<LogisticRegression> load(const String& filepath , const String& nodeName = String());
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                        Stochastic Gradient Descent SVM Classifier                      *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
/*!
 | 
						|
@brief Stochastic Gradient Descent SVM classifier
 | 
						|
 | 
						|
SVMSGD provides a fast and easy-to-use implementation of the SVM classifier using the Stochastic Gradient Descent approach,
 | 
						|
as presented in @cite bottou2010large.
 | 
						|
 | 
						|
The classifier has following parameters:
 | 
						|
- model type,
 | 
						|
- margin type,
 | 
						|
- margin regularization (\f$\lambda\f$),
 | 
						|
- initial step size (\f$\gamma_0\f$),
 | 
						|
- step decreasing power (\f$c\f$),
 | 
						|
- and termination criteria.
 | 
						|
 | 
						|
The model type may have one of the following values: \ref SGD and \ref ASGD.
 | 
						|
 | 
						|
- \ref SGD is the classic version of SVMSGD classifier: every next step is calculated by the formula
 | 
						|
  \f[w_{t+1} = w_t - \gamma(t) \frac{dQ_i}{dw} |_{w = w_t}\f]
 | 
						|
  where
 | 
						|
  - \f$w_t\f$ is the weights vector for decision function at step \f$t\f$,
 | 
						|
  - \f$\gamma(t)\f$ is the step size of model parameters at the iteration \f$t\f$, it is decreased on each step by the formula
 | 
						|
    \f$\gamma(t) = \gamma_0  (1 + \lambda  \gamma_0 t) ^ {-c}\f$
 | 
						|
  - \f$Q_i\f$ is the target functional from SVM task for sample with number \f$i\f$, this sample is chosen stochastically on each step of the algorithm.
 | 
						|
 | 
						|
- \ref ASGD is Average Stochastic Gradient Descent SVM Classifier. ASGD classifier averages weights vector on each step of algorithm by the formula
 | 
						|
\f$\widehat{w}_{t+1} = \frac{t}{1+t}\widehat{w}_{t} + \frac{1}{1+t}w_{t+1}\f$
 | 
						|
 | 
						|
The recommended model type is ASGD (following @cite bottou2010large).
 | 
						|
 | 
						|
The margin type may have one of the following values: \ref SOFT_MARGIN or \ref HARD_MARGIN.
 | 
						|
 | 
						|
- You should use \ref HARD_MARGIN type, if you have linearly separable sets.
 | 
						|
- You should use \ref SOFT_MARGIN type, if you have non-linearly separable sets or sets with outliers.
 | 
						|
- In the general case (if you know nothing about linear separability of your sets), use SOFT_MARGIN.
 | 
						|
 | 
						|
The other parameters may be described as follows:
 | 
						|
- Margin regularization parameter is responsible for weights decreasing at each step and for the strength of restrictions on outliers
 | 
						|
  (the less the parameter, the less probability that an outlier will be ignored).
 | 
						|
  Recommended value for SGD model is 0.0001, for ASGD model is 0.00001.
 | 
						|
 | 
						|
- Initial step size parameter is the initial value for the step size \f$\gamma(t)\f$.
 | 
						|
  You will have to find the best initial step for your problem.
 | 
						|
 | 
						|
- Step decreasing power is the power parameter for \f$\gamma(t)\f$ decreasing by the formula, mentioned above.
 | 
						|
  Recommended value for SGD model is 1, for ASGD model is 0.75.
 | 
						|
 | 
						|
- Termination criteria can be TermCriteria::COUNT, TermCriteria::EPS or TermCriteria::COUNT + TermCriteria::EPS.
 | 
						|
  You will have to find the best termination criteria for your problem.
 | 
						|
 | 
						|
Note that the parameters margin regularization, initial step size, and step decreasing power should be positive.
 | 
						|
 | 
						|
To use SVMSGD algorithm do as follows:
 | 
						|
 | 
						|
- first, create the SVMSGD object. The algorithm will set optimal parameters by default, but you can set your own parameters via functions setSvmsgdType(),
 | 
						|
  setMarginType(), setMarginRegularization(), setInitialStepSize(), and setStepDecreasingPower().
 | 
						|
 | 
						|
- then the SVM model can be trained using the train features and the correspondent labels by the method train().
 | 
						|
 | 
						|
- after that, the label of a new feature vector can be predicted using the method predict().
 | 
						|
 | 
						|
@code
 | 
						|
// Create empty object
 | 
						|
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
 | 
						|
 | 
						|
// Train the Stochastic Gradient Descent SVM
 | 
						|
svmsgd->train(trainData);
 | 
						|
 | 
						|
// Predict labels for the new samples
 | 
						|
svmsgd->predict(samples, responses);
 | 
						|
@endcode
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
class CV_EXPORTS_W SVMSGD : public cv::ml::StatModel
 | 
						|
{
 | 
						|
public:
 | 
						|
 | 
						|
    /** SVMSGD type.
 | 
						|
    ASGD is often the preferable choice. */
 | 
						|
    enum SvmsgdType
 | 
						|
    {
 | 
						|
        SGD, //!< Stochastic Gradient Descent
 | 
						|
        ASGD //!< Average Stochastic Gradient Descent
 | 
						|
    };
 | 
						|
 | 
						|
    /** Margin type.*/
 | 
						|
    enum MarginType
 | 
						|
    {
 | 
						|
        SOFT_MARGIN, //!< General case, suits to the case of non-linearly separable sets, allows outliers.
 | 
						|
        HARD_MARGIN  //!< More accurate for the case of linearly separable sets.
 | 
						|
    };
 | 
						|
 | 
						|
    /**
 | 
						|
     * @return the weights of the trained model (decision function f(x) = weights * x + shift).
 | 
						|
    */
 | 
						|
    CV_WRAP virtual Mat getWeights() = 0;
 | 
						|
 | 
						|
    /**
 | 
						|
     * @return the shift of the trained model (decision function f(x) = weights * x + shift).
 | 
						|
    */
 | 
						|
    CV_WRAP virtual float getShift() = 0;
 | 
						|
 | 
						|
    /** @brief Creates empty model.
 | 
						|
     * Use StatModel::train to train the model. Since %SVMSGD has several parameters, you may want to
 | 
						|
     * find the best parameters for your problem or use setOptimalParameters() to set some default parameters.
 | 
						|
    */
 | 
						|
    CV_WRAP static Ptr<SVMSGD> create();
 | 
						|
 | 
						|
    /** @brief Loads and creates a serialized SVMSGD from a file
 | 
						|
     *
 | 
						|
     * Use SVMSGD::save to serialize and store an SVMSGD to disk.
 | 
						|
     * Load the SVMSGD from this file again, by calling this function with the path to the file.
 | 
						|
     * Optionally specify the node for the file containing the classifier
 | 
						|
     *
 | 
						|
     * @param filepath path to serialized SVMSGD
 | 
						|
     * @param nodeName name of node containing the classifier
 | 
						|
     */
 | 
						|
    CV_WRAP static Ptr<SVMSGD> load(const String& filepath , const String& nodeName = String());
 | 
						|
 | 
						|
    /** @brief Function sets optimal parameters values for chosen SVM SGD model.
 | 
						|
     * @param svmsgdType is the type of SVMSGD classifier.
 | 
						|
     * @param marginType is the type of margin constraint.
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void setOptimalParameters(int svmsgdType = SVMSGD::ASGD, int marginType = SVMSGD::SOFT_MARGIN) = 0;
 | 
						|
 | 
						|
    /** @brief %Algorithm type, one of SVMSGD::SvmsgdType. */
 | 
						|
    /** @see setSvmsgdType */
 | 
						|
    CV_WRAP virtual int getSvmsgdType() const = 0;
 | 
						|
    /** @copybrief getSvmsgdType @see getSvmsgdType */
 | 
						|
    CV_WRAP virtual void setSvmsgdType(int svmsgdType) = 0;
 | 
						|
 | 
						|
    /** @brief %Margin type, one of SVMSGD::MarginType. */
 | 
						|
    /** @see setMarginType */
 | 
						|
    CV_WRAP virtual int getMarginType() const = 0;
 | 
						|
    /** @copybrief getMarginType @see getMarginType */
 | 
						|
    CV_WRAP virtual void setMarginType(int marginType) = 0;
 | 
						|
 | 
						|
    /** @brief Parameter marginRegularization of a %SVMSGD optimization problem. */
 | 
						|
    /** @see setMarginRegularization */
 | 
						|
    CV_WRAP virtual float getMarginRegularization() const = 0;
 | 
						|
    /** @copybrief getMarginRegularization @see getMarginRegularization */
 | 
						|
    CV_WRAP virtual void setMarginRegularization(float marginRegularization) = 0;
 | 
						|
 | 
						|
    /** @brief Parameter initialStepSize of a %SVMSGD optimization problem. */
 | 
						|
    /** @see setInitialStepSize */
 | 
						|
    CV_WRAP virtual float getInitialStepSize() const = 0;
 | 
						|
    /** @copybrief getInitialStepSize @see getInitialStepSize */
 | 
						|
    CV_WRAP virtual void setInitialStepSize(float InitialStepSize) = 0;
 | 
						|
 | 
						|
    /** @brief Parameter stepDecreasingPower of a %SVMSGD optimization problem. */
 | 
						|
    /** @see setStepDecreasingPower */
 | 
						|
    CV_WRAP virtual float getStepDecreasingPower() const = 0;
 | 
						|
    /** @copybrief getStepDecreasingPower @see getStepDecreasingPower */
 | 
						|
    CV_WRAP virtual void setStepDecreasingPower(float stepDecreasingPower) = 0;
 | 
						|
 | 
						|
    /** @brief Termination criteria of the training algorithm.
 | 
						|
    You can specify the maximum number of iterations (maxCount) and/or how much the error could
 | 
						|
    change between the iterations to make the algorithm continue (epsilon).*/
 | 
						|
    /** @see setTermCriteria */
 | 
						|
    CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
 | 
						|
    /** @copybrief getTermCriteria @see getTermCriteria */
 | 
						|
    CV_WRAP virtual void setTermCriteria(const cv::TermCriteria &val) = 0;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                           Auxiliary functions declarations                              *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
/** @brief Generates _sample_ from multivariate normal distribution
 | 
						|
 | 
						|
@param mean an average row vector
 | 
						|
@param cov symmetric covariation matrix
 | 
						|
@param nsamples returned samples count
 | 
						|
@param samples returned samples array
 | 
						|
*/
 | 
						|
CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, OutputArray samples);
 | 
						|
 | 
						|
/** @brief Creates test set */
 | 
						|
CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses,
 | 
						|
                                                OutputArray samples, OutputArray responses);
 | 
						|
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                   Simulated annealing solver                             *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
#ifdef CV_DOXYGEN
 | 
						|
/** @brief This class declares example interface for system state used in simulated annealing optimization algorithm.
 | 
						|
 | 
						|
@note This class is not defined in C++ code and can't be use directly - you need your own implementation with the same methods.
 | 
						|
*/
 | 
						|
struct SimulatedAnnealingSolverSystem
 | 
						|
{
 | 
						|
    /** Give energy value for a state of system.*/
 | 
						|
    double energy() const;
 | 
						|
    /** Function which change the state of system (random perturbation).*/
 | 
						|
    void changeState();
 | 
						|
    /** Function to reverse to the previous state. Can be called once only after changeState(). */
 | 
						|
    void reverseState();
 | 
						|
};
 | 
						|
#endif // CV_DOXYGEN
 | 
						|
 | 
						|
/** @brief The class implements simulated annealing for optimization.
 | 
						|
 | 
						|
@cite Kirkpatrick83 for details
 | 
						|
 | 
						|
@param solverSystem optimization system (see SimulatedAnnealingSolverSystem)
 | 
						|
@param initialTemperature initial temperature
 | 
						|
@param finalTemperature final temperature
 | 
						|
@param coolingRatio temperature step multiplies
 | 
						|
@param iterationsPerStep number of iterations per temperature changing step
 | 
						|
@param lastTemperature optional output for last used temperature
 | 
						|
@param rngEnergy specify custom random numbers generator (cv::theRNG() by default)
 | 
						|
*/
 | 
						|
template<class SimulatedAnnealingSolverSystem>
 | 
						|
int simulatedAnnealingSolver(SimulatedAnnealingSolverSystem& solverSystem,
 | 
						|
     double initialTemperature, double finalTemperature, double coolingRatio,
 | 
						|
     size_t iterationsPerStep,
 | 
						|
     CV_OUT double* lastTemperature = NULL,
 | 
						|
     cv::RNG& rngEnergy = cv::theRNG()
 | 
						|
);
 | 
						|
 | 
						|
//! @} ml
 | 
						|
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
#include <opencv2/ml/ml.inl.hpp>
 | 
						|
 | 
						|
#endif // __cplusplus
 | 
						|
#endif // OPENCV_ML_HPP
 | 
						|
 | 
						|
/* End of file. */
 |