You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			837 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
			
		
		
	
	
			837 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                          License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#ifndef OPENCV_OBJDETECT_HPP
 | 
						|
#define OPENCV_OBJDETECT_HPP
 | 
						|
 | 
						|
#include "opencv2/core.hpp"
 | 
						|
 | 
						|
/**
 | 
						|
@defgroup objdetect Object Detection
 | 
						|
 | 
						|
Haar Feature-based Cascade Classifier for Object Detection
 | 
						|
----------------------------------------------------------
 | 
						|
 | 
						|
The object detector described below has been initially proposed by Paul Viola @cite Viola01 and
 | 
						|
improved by Rainer Lienhart @cite Lienhart02 .
 | 
						|
 | 
						|
First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is
 | 
						|
trained with a few hundred sample views of a particular object (i.e., a face or a car), called
 | 
						|
positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary
 | 
						|
images of the same size.
 | 
						|
 | 
						|
After a classifier is trained, it can be applied to a region of interest (of the same size as used
 | 
						|
during the training) in an input image. The classifier outputs a "1" if the region is likely to show
 | 
						|
the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can
 | 
						|
move the search window across the image and check every location using the classifier. The
 | 
						|
classifier is designed so that it can be easily "resized" in order to be able to find the objects of
 | 
						|
interest at different sizes, which is more efficient than resizing the image itself. So, to find an
 | 
						|
object of an unknown size in the image the scan procedure should be done several times at different
 | 
						|
scales.
 | 
						|
 | 
						|
The word "cascade" in the classifier name means that the resultant classifier consists of several
 | 
						|
simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some
 | 
						|
stage the candidate is rejected or all the stages are passed. The word "boosted" means that the
 | 
						|
classifiers at every stage of the cascade are complex themselves and they are built out of basic
 | 
						|
classifiers using one of four different boosting techniques (weighted voting). Currently Discrete
 | 
						|
Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are
 | 
						|
decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic
 | 
						|
classifiers, and are calculated as described below. The current algorithm uses the following
 | 
						|
Haar-like features:
 | 
						|
 | 
						|

 | 
						|
 | 
						|
The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within
 | 
						|
the region of interest and the scale (this scale is not the same as the scale used at the detection
 | 
						|
stage, though these two scales are multiplied). For example, in the case of the third line feature
 | 
						|
(2c) the response is calculated as the difference between the sum of image pixels under the
 | 
						|
rectangle covering the whole feature (including the two white stripes and the black stripe in the
 | 
						|
middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to
 | 
						|
compensate for the differences in the size of areas. The sums of pixel values over a rectangular
 | 
						|
regions are calculated rapidly using integral images (see below and the integral description).
 | 
						|
 | 
						|
To see the object detector at work, have a look at the facedetect demo:
 | 
						|
<https://github.com/opencv/opencv/tree/4.x/samples/cpp/dbt_face_detection.cpp>
 | 
						|
 | 
						|
The following reference is for the detection part only. There is a separate application called
 | 
						|
opencv_traincascade that can train a cascade of boosted classifiers from a set of samples.
 | 
						|
 | 
						|
@note In the new C++ interface it is also possible to use LBP (local binary pattern) features in
 | 
						|
addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection
 | 
						|
using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at
 | 
						|
<http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf>
 | 
						|
 | 
						|
@{
 | 
						|
    @defgroup objdetect_c C API
 | 
						|
@}
 | 
						|
 */
 | 
						|
 | 
						|
typedef struct CvHaarClassifierCascade CvHaarClassifierCascade;
 | 
						|
 | 
						|
namespace cv
 | 
						|
{
 | 
						|
 | 
						|
//! @addtogroup objdetect
 | 
						|
//! @{
 | 
						|
 | 
						|
///////////////////////////// Object Detection ////////////////////////////
 | 
						|
 | 
						|
//! class for grouping object candidates, detected by Cascade Classifier, HOG etc.
 | 
						|
//! instance of the class is to be passed to cv::partition (see cxoperations.hpp)
 | 
						|
class CV_EXPORTS SimilarRects
 | 
						|
{
 | 
						|
public:
 | 
						|
    SimilarRects(double _eps) : eps(_eps) {}
 | 
						|
    inline bool operator()(const Rect& r1, const Rect& r2) const
 | 
						|
    {
 | 
						|
        double delta = eps * ((std::min)(r1.width, r2.width) + (std::min)(r1.height, r2.height)) * 0.5;
 | 
						|
        return std::abs(r1.x - r2.x) <= delta &&
 | 
						|
            std::abs(r1.y - r2.y) <= delta &&
 | 
						|
            std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
 | 
						|
            std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
 | 
						|
    }
 | 
						|
    double eps;
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Groups the object candidate rectangles.
 | 
						|
 | 
						|
@param rectList Input/output vector of rectangles. Output vector includes retained and grouped
 | 
						|
rectangles. (The Python list is not modified in place.)
 | 
						|
@param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a
 | 
						|
group of rectangles to retain it.
 | 
						|
@param eps Relative difference between sides of the rectangles to merge them into a group.
 | 
						|
 | 
						|
The function is a wrapper for the generic function partition . It clusters all the input rectangles
 | 
						|
using the rectangle equivalence criteria that combines rectangles with similar sizes and similar
 | 
						|
locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If
 | 
						|
\f$\texttt{eps}\rightarrow +\inf\f$ , all the rectangles are put in one cluster. Then, the small
 | 
						|
clusters containing less than or equal to groupThreshold rectangles are rejected. In each other
 | 
						|
cluster, the average rectangle is computed and put into the output rectangle list.
 | 
						|
 */
 | 
						|
CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2);
 | 
						|
/** @overload */
 | 
						|
CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights,
 | 
						|
                                  int groupThreshold, double eps = 0.2);
 | 
						|
/** @overload */
 | 
						|
CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, int groupThreshold,
 | 
						|
                                  double eps, std::vector<int>* weights, std::vector<double>* levelWeights );
 | 
						|
/** @overload */
 | 
						|
CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels,
 | 
						|
                                  std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2);
 | 
						|
/** @overload */
 | 
						|
CV_EXPORTS   void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights,
 | 
						|
                                            std::vector<double>& foundScales,
 | 
						|
                                            double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
 | 
						|
 | 
						|
template<> struct DefaultDeleter<CvHaarClassifierCascade>{ CV_EXPORTS void operator ()(CvHaarClassifierCascade* obj) const; };
 | 
						|
 | 
						|
enum { CASCADE_DO_CANNY_PRUNING    = 1,
 | 
						|
       CASCADE_SCALE_IMAGE         = 2,
 | 
						|
       CASCADE_FIND_BIGGEST_OBJECT = 4,
 | 
						|
       CASCADE_DO_ROUGH_SEARCH     = 8
 | 
						|
     };
 | 
						|
 | 
						|
class CV_EXPORTS_W BaseCascadeClassifier : public Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
    virtual ~BaseCascadeClassifier();
 | 
						|
    virtual bool empty() const CV_OVERRIDE = 0;
 | 
						|
    virtual bool load( const String& filename ) = 0;
 | 
						|
    virtual void detectMultiScale( InputArray image,
 | 
						|
                           CV_OUT std::vector<Rect>& objects,
 | 
						|
                           double scaleFactor,
 | 
						|
                           int minNeighbors, int flags,
 | 
						|
                           Size minSize, Size maxSize ) = 0;
 | 
						|
 | 
						|
    virtual void detectMultiScale( InputArray image,
 | 
						|
                           CV_OUT std::vector<Rect>& objects,
 | 
						|
                           CV_OUT std::vector<int>& numDetections,
 | 
						|
                           double scaleFactor,
 | 
						|
                           int minNeighbors, int flags,
 | 
						|
                           Size minSize, Size maxSize ) = 0;
 | 
						|
 | 
						|
    virtual void detectMultiScale( InputArray image,
 | 
						|
                                   CV_OUT std::vector<Rect>& objects,
 | 
						|
                                   CV_OUT std::vector<int>& rejectLevels,
 | 
						|
                                   CV_OUT std::vector<double>& levelWeights,
 | 
						|
                                   double scaleFactor,
 | 
						|
                                   int minNeighbors, int flags,
 | 
						|
                                   Size minSize, Size maxSize,
 | 
						|
                                   bool outputRejectLevels ) = 0;
 | 
						|
 | 
						|
    virtual bool isOldFormatCascade() const = 0;
 | 
						|
    virtual Size getOriginalWindowSize() const = 0;
 | 
						|
    virtual int getFeatureType() const = 0;
 | 
						|
    virtual void* getOldCascade() = 0;
 | 
						|
 | 
						|
    class CV_EXPORTS MaskGenerator
 | 
						|
    {
 | 
						|
    public:
 | 
						|
        virtual ~MaskGenerator() {}
 | 
						|
        virtual Mat generateMask(const Mat& src)=0;
 | 
						|
        virtual void initializeMask(const Mat& /*src*/) { }
 | 
						|
    };
 | 
						|
    virtual void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator) = 0;
 | 
						|
    virtual Ptr<MaskGenerator> getMaskGenerator() = 0;
 | 
						|
};
 | 
						|
 | 
						|
/** @example samples/cpp/facedetect.cpp
 | 
						|
This program demonstrates usage of the Cascade classifier class
 | 
						|
\image html Cascade_Classifier_Tutorial_Result_Haar.jpg "Sample screenshot" width=321 height=254
 | 
						|
*/
 | 
						|
/** @brief Cascade classifier class for object detection.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W CascadeClassifier
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP CascadeClassifier();
 | 
						|
    /** @brief Loads a classifier from a file.
 | 
						|
 | 
						|
    @param filename Name of the file from which the classifier is loaded.
 | 
						|
     */
 | 
						|
    CV_WRAP CascadeClassifier(const String& filename);
 | 
						|
    ~CascadeClassifier();
 | 
						|
    /** @brief Checks whether the classifier has been loaded.
 | 
						|
    */
 | 
						|
    CV_WRAP bool empty() const;
 | 
						|
    /** @brief Loads a classifier from a file.
 | 
						|
 | 
						|
    @param filename Name of the file from which the classifier is loaded. The file may contain an old
 | 
						|
    HAAR classifier trained by the haartraining application or a new cascade classifier trained by the
 | 
						|
    traincascade application.
 | 
						|
     */
 | 
						|
    CV_WRAP bool load( const String& filename );
 | 
						|
    /** @brief Reads a classifier from a FileStorage node.
 | 
						|
 | 
						|
    @note The file may contain a new cascade classifier (trained traincascade application) only.
 | 
						|
     */
 | 
						|
    CV_WRAP bool read( const FileNode& node );
 | 
						|
 | 
						|
    /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
 | 
						|
    of rectangles.
 | 
						|
 | 
						|
    @param image Matrix of the type CV_8U containing an image where objects are detected.
 | 
						|
    @param objects Vector of rectangles where each rectangle contains the detected object, the
 | 
						|
    rectangles may be partially outside the original image.
 | 
						|
    @param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
 | 
						|
    @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
 | 
						|
    to retain it.
 | 
						|
    @param flags Parameter with the same meaning for an old cascade as in the function
 | 
						|
    cvHaarDetectObjects. It is not used for a new cascade.
 | 
						|
    @param minSize Minimum possible object size. Objects smaller than that are ignored.
 | 
						|
    @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale.
 | 
						|
 | 
						|
    The function is parallelized with the TBB library.
 | 
						|
 | 
						|
    @note
 | 
						|
       -   (Python) A face detection example using cascade classifiers can be found at
 | 
						|
            opencv_source_code/samples/python/facedetect.py
 | 
						|
    */
 | 
						|
    CV_WRAP void detectMultiScale( InputArray image,
 | 
						|
                          CV_OUT std::vector<Rect>& objects,
 | 
						|
                          double scaleFactor = 1.1,
 | 
						|
                          int minNeighbors = 3, int flags = 0,
 | 
						|
                          Size minSize = Size(),
 | 
						|
                          Size maxSize = Size() );
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param image Matrix of the type CV_8U containing an image where objects are detected.
 | 
						|
    @param objects Vector of rectangles where each rectangle contains the detected object, the
 | 
						|
    rectangles may be partially outside the original image.
 | 
						|
    @param numDetections Vector of detection numbers for the corresponding objects. An object's number
 | 
						|
    of detections is the number of neighboring positively classified rectangles that were joined
 | 
						|
    together to form the object.
 | 
						|
    @param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
 | 
						|
    @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
 | 
						|
    to retain it.
 | 
						|
    @param flags Parameter with the same meaning for an old cascade as in the function
 | 
						|
    cvHaarDetectObjects. It is not used for a new cascade.
 | 
						|
    @param minSize Minimum possible object size. Objects smaller than that are ignored.
 | 
						|
    @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale.
 | 
						|
    */
 | 
						|
    CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image,
 | 
						|
                          CV_OUT std::vector<Rect>& objects,
 | 
						|
                          CV_OUT std::vector<int>& numDetections,
 | 
						|
                          double scaleFactor=1.1,
 | 
						|
                          int minNeighbors=3, int flags=0,
 | 
						|
                          Size minSize=Size(),
 | 
						|
                          Size maxSize=Size() );
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    This function allows you to retrieve the final stage decision certainty of classification.
 | 
						|
    For this, one needs to set `outputRejectLevels` on true and provide the `rejectLevels` and `levelWeights` parameter.
 | 
						|
    For each resulting detection, `levelWeights` will then contain the certainty of classification at the final stage.
 | 
						|
    This value can then be used to separate strong from weaker classifications.
 | 
						|
 | 
						|
    A code sample on how to use it efficiently can be found below:
 | 
						|
    @code
 | 
						|
    Mat img;
 | 
						|
    vector<double> weights;
 | 
						|
    vector<int> levels;
 | 
						|
    vector<Rect> detections;
 | 
						|
    CascadeClassifier model("/path/to/your/model.xml");
 | 
						|
    model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true);
 | 
						|
    cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl;
 | 
						|
    @endcode
 | 
						|
    */
 | 
						|
    CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image,
 | 
						|
                                  CV_OUT std::vector<Rect>& objects,
 | 
						|
                                  CV_OUT std::vector<int>& rejectLevels,
 | 
						|
                                  CV_OUT std::vector<double>& levelWeights,
 | 
						|
                                  double scaleFactor = 1.1,
 | 
						|
                                  int minNeighbors = 3, int flags = 0,
 | 
						|
                                  Size minSize = Size(),
 | 
						|
                                  Size maxSize = Size(),
 | 
						|
                                  bool outputRejectLevels = false );
 | 
						|
 | 
						|
    CV_WRAP bool isOldFormatCascade() const;
 | 
						|
    CV_WRAP Size getOriginalWindowSize() const;
 | 
						|
    CV_WRAP int getFeatureType() const;
 | 
						|
    void* getOldCascade();
 | 
						|
 | 
						|
    CV_WRAP static bool convert(const String& oldcascade, const String& newcascade);
 | 
						|
 | 
						|
    void setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator);
 | 
						|
    Ptr<BaseCascadeClassifier::MaskGenerator> getMaskGenerator();
 | 
						|
 | 
						|
    Ptr<BaseCascadeClassifier> cc;
 | 
						|
};
 | 
						|
 | 
						|
CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator();
 | 
						|
 | 
						|
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
 | 
						|
 | 
						|
//! struct for detection region of interest (ROI)
 | 
						|
struct DetectionROI
 | 
						|
{
 | 
						|
   //! scale(size) of the bounding box
 | 
						|
   double scale;
 | 
						|
   //! set of requested locations to be evaluated
 | 
						|
   std::vector<cv::Point> locations;
 | 
						|
   //! vector that will contain confidence values for each location
 | 
						|
   std::vector<double> confidences;
 | 
						|
};
 | 
						|
 | 
						|
/**@brief Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector.
 | 
						|
 | 
						|
the HOG descriptor algorithm introduced by Navneet Dalal and Bill Triggs @cite Dalal2005 .
 | 
						|
 | 
						|
useful links:
 | 
						|
 | 
						|
https://hal.inria.fr/inria-00548512/document/
 | 
						|
 | 
						|
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
 | 
						|
 | 
						|
https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor
 | 
						|
 | 
						|
http://www.learnopencv.com/histogram-of-oriented-gradients
 | 
						|
 | 
						|
http://www.learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial
 | 
						|
 | 
						|
 */
 | 
						|
struct CV_EXPORTS_W HOGDescriptor
 | 
						|
{
 | 
						|
public:
 | 
						|
    enum HistogramNormType { L2Hys = 0 //!< Default histogramNormType
 | 
						|
         };
 | 
						|
    enum { DEFAULT_NLEVELS = 64 //!< Default nlevels value.
 | 
						|
         };
 | 
						|
    enum DescriptorStorageFormat { DESCR_FORMAT_COL_BY_COL, DESCR_FORMAT_ROW_BY_ROW };
 | 
						|
 | 
						|
    /**@brief Creates the HOG descriptor and detector with default params.
 | 
						|
 | 
						|
    aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )
 | 
						|
    */
 | 
						|
    CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
 | 
						|
        cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
 | 
						|
        histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
 | 
						|
        free_coef(-1.f), nlevels(HOGDescriptor::DEFAULT_NLEVELS), signedGradient(false)
 | 
						|
    {}
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param _winSize sets winSize with given value.
 | 
						|
    @param _blockSize sets blockSize with given value.
 | 
						|
    @param _blockStride sets blockStride with given value.
 | 
						|
    @param _cellSize sets cellSize with given value.
 | 
						|
    @param _nbins sets nbins with given value.
 | 
						|
    @param _derivAperture sets derivAperture with given value.
 | 
						|
    @param _winSigma sets winSigma with given value.
 | 
						|
    @param _histogramNormType sets histogramNormType with given value.
 | 
						|
    @param _L2HysThreshold sets L2HysThreshold with given value.
 | 
						|
    @param _gammaCorrection sets gammaCorrection with given value.
 | 
						|
    @param _nlevels sets nlevels with given value.
 | 
						|
    @param _signedGradient sets signedGradient with given value.
 | 
						|
    */
 | 
						|
    CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
 | 
						|
                  Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
 | 
						|
                  HOGDescriptor::HistogramNormType _histogramNormType=HOGDescriptor::L2Hys,
 | 
						|
                  double _L2HysThreshold=0.2, bool _gammaCorrection=false,
 | 
						|
                  int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false)
 | 
						|
    : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
 | 
						|
    nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
 | 
						|
    histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
 | 
						|
    gammaCorrection(_gammaCorrection), free_coef(-1.f), nlevels(_nlevels), signedGradient(_signedGradient)
 | 
						|
    {}
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param filename The file name containing HOGDescriptor properties and coefficients for the linear SVM classifier.
 | 
						|
    */
 | 
						|
    CV_WRAP HOGDescriptor(const String& filename)
 | 
						|
    {
 | 
						|
        load(filename);
 | 
						|
    }
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param d the HOGDescriptor which cloned to create a new one.
 | 
						|
    */
 | 
						|
    HOGDescriptor(const HOGDescriptor& d)
 | 
						|
    {
 | 
						|
        d.copyTo(*this);
 | 
						|
    }
 | 
						|
 | 
						|
    /**@brief Default destructor.
 | 
						|
    */
 | 
						|
    virtual ~HOGDescriptor() {}
 | 
						|
 | 
						|
    /**@brief Returns the number of coefficients required for the classification.
 | 
						|
    */
 | 
						|
    CV_WRAP size_t getDescriptorSize() const;
 | 
						|
 | 
						|
    /** @brief Checks if detector size equal to descriptor size.
 | 
						|
    */
 | 
						|
    CV_WRAP bool checkDetectorSize() const;
 | 
						|
 | 
						|
    /** @brief Returns winSigma value
 | 
						|
    */
 | 
						|
    CV_WRAP double getWinSigma() const;
 | 
						|
 | 
						|
    /**@example samples/cpp/peopledetect.cpp
 | 
						|
    */
 | 
						|
    /**@brief Sets coefficients for the linear SVM classifier.
 | 
						|
    @param svmdetector coefficients for the linear SVM classifier.
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void setSVMDetector(InputArray svmdetector);
 | 
						|
 | 
						|
    /** @brief Reads HOGDescriptor parameters from a cv::FileNode.
 | 
						|
    @param fn File node
 | 
						|
    */
 | 
						|
    virtual bool read(FileNode& fn);
 | 
						|
 | 
						|
    /** @brief Stores HOGDescriptor parameters in a cv::FileStorage.
 | 
						|
    @param fs File storage
 | 
						|
    @param objname Object name
 | 
						|
    */
 | 
						|
    virtual void write(FileStorage& fs, const String& objname) const;
 | 
						|
 | 
						|
    /** @brief loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file.
 | 
						|
    @param filename Path of the file to read.
 | 
						|
    @param objname The optional name of the node to read (if empty, the first top-level node will be used).
 | 
						|
    */
 | 
						|
    CV_WRAP virtual bool load(const String& filename, const String& objname = String());
 | 
						|
 | 
						|
    /** @brief saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
 | 
						|
    @param filename File name
 | 
						|
    @param objname Object name
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void save(const String& filename, const String& objname = String()) const;
 | 
						|
 | 
						|
    /** @brief clones the HOGDescriptor
 | 
						|
    @param c cloned HOGDescriptor
 | 
						|
    */
 | 
						|
    virtual void copyTo(HOGDescriptor& c) const;
 | 
						|
 | 
						|
    /**@example samples/cpp/train_HOG.cpp
 | 
						|
    */
 | 
						|
    /** @brief Computes HOG descriptors of given image.
 | 
						|
    @param img Matrix of the type CV_8U containing an image where HOG features will be calculated.
 | 
						|
    @param descriptors Matrix of the type CV_32F
 | 
						|
    @param winStride Window stride. It must be a multiple of block stride.
 | 
						|
    @param padding Padding
 | 
						|
    @param locations Vector of Point
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void compute(InputArray img,
 | 
						|
                         CV_OUT std::vector<float>& descriptors,
 | 
						|
                         Size winStride = Size(), Size padding = Size(),
 | 
						|
                         const std::vector<Point>& locations = std::vector<Point>()) const;
 | 
						|
 | 
						|
    /** @brief Performs object detection without a multi-scale window.
 | 
						|
    @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
 | 
						|
    @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries.
 | 
						|
    @param weights Vector that will contain confidence values for each detected object.
 | 
						|
    @param hitThreshold Threshold for the distance between features and SVM classifying plane.
 | 
						|
    Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
 | 
						|
    But if the free coefficient is omitted (which is allowed), you can specify it manually here.
 | 
						|
    @param winStride Window stride. It must be a multiple of block stride.
 | 
						|
    @param padding Padding
 | 
						|
    @param searchLocations Vector of Point includes set of requested locations to be evaluated.
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations,
 | 
						|
                        CV_OUT std::vector<double>& weights,
 | 
						|
                        double hitThreshold = 0, Size winStride = Size(),
 | 
						|
                        Size padding = Size(),
 | 
						|
                        const std::vector<Point>& searchLocations = std::vector<Point>()) const;
 | 
						|
 | 
						|
    /** @brief Performs object detection without a multi-scale window.
 | 
						|
    @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
 | 
						|
    @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries.
 | 
						|
    @param hitThreshold Threshold for the distance between features and SVM classifying plane.
 | 
						|
    Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
 | 
						|
    But if the free coefficient is omitted (which is allowed), you can specify it manually here.
 | 
						|
    @param winStride Window stride. It must be a multiple of block stride.
 | 
						|
    @param padding Padding
 | 
						|
    @param searchLocations Vector of Point includes locations to search.
 | 
						|
    */
 | 
						|
    virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations,
 | 
						|
                        double hitThreshold = 0, Size winStride = Size(),
 | 
						|
                        Size padding = Size(),
 | 
						|
                        const std::vector<Point>& searchLocations=std::vector<Point>()) const;
 | 
						|
 | 
						|
    /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
 | 
						|
    of rectangles.
 | 
						|
    @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
 | 
						|
    @param foundLocations Vector of rectangles where each rectangle contains the detected object.
 | 
						|
    @param foundWeights Vector that will contain confidence values for each detected object.
 | 
						|
    @param hitThreshold Threshold for the distance between features and SVM classifying plane.
 | 
						|
    Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
 | 
						|
    But if the free coefficient is omitted (which is allowed), you can specify it manually here.
 | 
						|
    @param winStride Window stride. It must be a multiple of block stride.
 | 
						|
    @param padding Padding
 | 
						|
    @param scale Coefficient of the detection window increase.
 | 
						|
    @param finalThreshold Final threshold
 | 
						|
    @param useMeanshiftGrouping indicates grouping algorithm
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
 | 
						|
                                  CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0,
 | 
						|
                                  Size winStride = Size(), Size padding = Size(), double scale = 1.05,
 | 
						|
                                  double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const;
 | 
						|
 | 
						|
    /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
 | 
						|
    of rectangles.
 | 
						|
    @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
 | 
						|
    @param foundLocations Vector of rectangles where each rectangle contains the detected object.
 | 
						|
    @param hitThreshold Threshold for the distance between features and SVM classifying plane.
 | 
						|
    Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
 | 
						|
    But if the free coefficient is omitted (which is allowed), you can specify it manually here.
 | 
						|
    @param winStride Window stride. It must be a multiple of block stride.
 | 
						|
    @param padding Padding
 | 
						|
    @param scale Coefficient of the detection window increase.
 | 
						|
    @param finalThreshold Final threshold
 | 
						|
    @param useMeanshiftGrouping indicates grouping algorithm
 | 
						|
    */
 | 
						|
    virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
 | 
						|
                                  double hitThreshold = 0, Size winStride = Size(),
 | 
						|
                                  Size padding = Size(), double scale = 1.05,
 | 
						|
                                  double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const;
 | 
						|
 | 
						|
    /** @brief  Computes gradients and quantized gradient orientations.
 | 
						|
    @param img Matrix contains the image to be computed
 | 
						|
    @param grad Matrix of type CV_32FC2 contains computed gradients
 | 
						|
    @param angleOfs Matrix of type CV_8UC2 contains quantized gradient orientations
 | 
						|
    @param paddingTL Padding from top-left
 | 
						|
    @param paddingBR Padding from bottom-right
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void computeGradient(InputArray img, InputOutputArray grad, InputOutputArray angleOfs,
 | 
						|
                                 Size paddingTL = Size(), Size paddingBR = Size()) const;
 | 
						|
 | 
						|
    /** @brief Returns coefficients of the classifier trained for people detection (for 64x128 windows).
 | 
						|
    */
 | 
						|
    CV_WRAP static std::vector<float> getDefaultPeopleDetector();
 | 
						|
 | 
						|
    /**@example samples/tapi/hog.cpp
 | 
						|
    */
 | 
						|
    /** @brief Returns coefficients of the classifier trained for people detection (for 48x96 windows).
 | 
						|
    */
 | 
						|
    CV_WRAP static std::vector<float> getDaimlerPeopleDetector();
 | 
						|
 | 
						|
    //! Detection window size. Align to block size and block stride. Default value is Size(64,128).
 | 
						|
    CV_PROP Size winSize;
 | 
						|
 | 
						|
    //! Block size in pixels. Align to cell size. Default value is Size(16,16).
 | 
						|
    CV_PROP Size blockSize;
 | 
						|
 | 
						|
    //! Block stride. It must be a multiple of cell size. Default value is Size(8,8).
 | 
						|
    CV_PROP Size blockStride;
 | 
						|
 | 
						|
    //! Cell size. Default value is Size(8,8).
 | 
						|
    CV_PROP Size cellSize;
 | 
						|
 | 
						|
    //! Number of bins used in the calculation of histogram of gradients. Default value is 9.
 | 
						|
    CV_PROP int nbins;
 | 
						|
 | 
						|
    //! not documented
 | 
						|
    CV_PROP int derivAperture;
 | 
						|
 | 
						|
    //! Gaussian smoothing window parameter.
 | 
						|
    CV_PROP double winSigma;
 | 
						|
 | 
						|
    //! histogramNormType
 | 
						|
    CV_PROP HOGDescriptor::HistogramNormType histogramNormType;
 | 
						|
 | 
						|
    //! L2-Hys normalization method shrinkage.
 | 
						|
    CV_PROP double L2HysThreshold;
 | 
						|
 | 
						|
    //! Flag to specify whether the gamma correction preprocessing is required or not.
 | 
						|
    CV_PROP bool gammaCorrection;
 | 
						|
 | 
						|
    //! coefficients for the linear SVM classifier.
 | 
						|
    CV_PROP std::vector<float> svmDetector;
 | 
						|
 | 
						|
    //! coefficients for the linear SVM classifier used when OpenCL is enabled
 | 
						|
    UMat oclSvmDetector;
 | 
						|
 | 
						|
    //! not documented
 | 
						|
    float free_coef;
 | 
						|
 | 
						|
    //! Maximum number of detection window increases. Default value is 64
 | 
						|
    CV_PROP int nlevels;
 | 
						|
 | 
						|
    //! Indicates signed gradient will be used or not
 | 
						|
    CV_PROP bool signedGradient;
 | 
						|
 | 
						|
    /** @brief evaluate specified ROI and return confidence value for each location
 | 
						|
    @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
 | 
						|
    @param locations Vector of Point
 | 
						|
    @param foundLocations Vector of Point where each Point is detected object's top-left point.
 | 
						|
    @param confidences confidences
 | 
						|
    @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually
 | 
						|
    it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if
 | 
						|
    the free coefficient is omitted (which is allowed), you can specify it manually here
 | 
						|
    @param winStride winStride
 | 
						|
    @param padding padding
 | 
						|
    */
 | 
						|
    virtual void detectROI(InputArray img, const std::vector<cv::Point> &locations,
 | 
						|
                                   CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences,
 | 
						|
                                   double hitThreshold = 0, cv::Size winStride = Size(),
 | 
						|
                                   cv::Size padding = Size()) const;
 | 
						|
 | 
						|
    /** @brief evaluate specified ROI and return confidence value for each location in multiple scales
 | 
						|
    @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
 | 
						|
    @param foundLocations Vector of rectangles where each rectangle contains the detected object.
 | 
						|
    @param locations Vector of DetectionROI
 | 
						|
    @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified
 | 
						|
    in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
 | 
						|
    @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.
 | 
						|
    */
 | 
						|
    virtual void detectMultiScaleROI(InputArray img,
 | 
						|
                                     CV_OUT std::vector<cv::Rect>& foundLocations,
 | 
						|
                                     std::vector<DetectionROI>& locations,
 | 
						|
                                     double hitThreshold = 0,
 | 
						|
                                     int groupThreshold = 0) const;
 | 
						|
 | 
						|
    /** @brief Groups the object candidate rectangles.
 | 
						|
    @param rectList  Input/output vector of rectangles. Output vector includes retained and grouped rectangles. (The Python list is not modified in place.)
 | 
						|
    @param weights Input/output vector of weights of rectangles. Output vector includes weights of retained and grouped rectangles. (The Python list is not modified in place.)
 | 
						|
    @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.
 | 
						|
    @param eps Relative difference between sides of the rectangles to merge them into a group.
 | 
						|
    */
 | 
						|
    void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const;
 | 
						|
};
 | 
						|
 | 
						|
class CV_EXPORTS_W QRCodeEncoder {
 | 
						|
protected:
 | 
						|
    QRCodeEncoder();  // use ::create()
 | 
						|
public:
 | 
						|
    virtual ~QRCodeEncoder();
 | 
						|
 | 
						|
    enum EncodeMode {
 | 
						|
        MODE_AUTO              = -1,
 | 
						|
        MODE_NUMERIC           = 1, // 0b0001
 | 
						|
        MODE_ALPHANUMERIC      = 2, // 0b0010
 | 
						|
        MODE_BYTE              = 4, // 0b0100
 | 
						|
        MODE_ECI               = 7, // 0b0111
 | 
						|
        MODE_KANJI             = 8, // 0b1000
 | 
						|
        MODE_STRUCTURED_APPEND = 3  // 0b0011
 | 
						|
    };
 | 
						|
 | 
						|
    enum CorrectionLevel {
 | 
						|
        CORRECT_LEVEL_L = 0,
 | 
						|
        CORRECT_LEVEL_M = 1,
 | 
						|
        CORRECT_LEVEL_Q = 2,
 | 
						|
        CORRECT_LEVEL_H = 3
 | 
						|
    };
 | 
						|
 | 
						|
    enum ECIEncodings {
 | 
						|
        ECI_UTF8 = 26
 | 
						|
    };
 | 
						|
 | 
						|
    /** @brief QR code encoder parameters.
 | 
						|
     @param version The optional version of QR code (by default - maximum possible depending on
 | 
						|
                    the length of the string).
 | 
						|
     @param correction_level The optional level of error correction (by default - the lowest).
 | 
						|
     @param mode The optional encoding mode - Numeric, Alphanumeric, Byte, Kanji, ECI or Structured Append.
 | 
						|
     @param structure_number The optional number of QR codes to generate in Structured Append mode.
 | 
						|
    */
 | 
						|
    struct CV_EXPORTS_W_SIMPLE Params
 | 
						|
    {
 | 
						|
        CV_WRAP Params();
 | 
						|
        CV_PROP_RW int version;
 | 
						|
        CV_PROP_RW CorrectionLevel correction_level;
 | 
						|
        CV_PROP_RW EncodeMode mode;
 | 
						|
        CV_PROP_RW int structure_number;
 | 
						|
    };
 | 
						|
 | 
						|
    /** @brief Constructor
 | 
						|
    @param parameters QR code encoder parameters QRCodeEncoder::Params
 | 
						|
    */
 | 
						|
    static CV_WRAP
 | 
						|
    Ptr<QRCodeEncoder> create(const QRCodeEncoder::Params& parameters = QRCodeEncoder::Params());
 | 
						|
 | 
						|
    /** @brief Generates QR code from input string.
 | 
						|
     @param encoded_info Input string to encode.
 | 
						|
     @param qrcode Generated QR code.
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void encode(const String& encoded_info, OutputArray qrcode) = 0;
 | 
						|
 | 
						|
    /** @brief Generates QR code from input string in Structured Append mode. The encoded message is splitting over a number of QR codes.
 | 
						|
     @param encoded_info Input string to encode.
 | 
						|
     @param qrcodes Vector of generated QR codes.
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void encodeStructuredAppend(const String& encoded_info, OutputArrayOfArrays qrcodes) = 0;
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
class CV_EXPORTS_W QRCodeDetector
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP QRCodeDetector();
 | 
						|
    ~QRCodeDetector();
 | 
						|
 | 
						|
    /** @brief sets the epsilon used during the horizontal scan of QR code stop marker detection.
 | 
						|
     @param epsX Epsilon neighborhood, which allows you to determine the horizontal pattern
 | 
						|
     of the scheme 1:1:3:1:1 according to QR code standard.
 | 
						|
    */
 | 
						|
    CV_WRAP void setEpsX(double epsX);
 | 
						|
    /** @brief sets the epsilon used during the vertical scan of QR code stop marker detection.
 | 
						|
     @param epsY Epsilon neighborhood, which allows you to determine the vertical pattern
 | 
						|
     of the scheme 1:1:3:1:1 according to QR code standard.
 | 
						|
     */
 | 
						|
    CV_WRAP void setEpsY(double epsY);
 | 
						|
 | 
						|
    /** @brief Detects QR code in image and returns the quadrangle containing the code.
 | 
						|
     @param img grayscale or color (BGR) image containing (or not) QR code.
 | 
						|
     @param points Output vector of vertices of the minimum-area quadrangle containing the code.
 | 
						|
     */
 | 
						|
    CV_WRAP bool detect(InputArray img, OutputArray points) const;
 | 
						|
 | 
						|
    /** @brief Decodes QR code in image once it's found by the detect() method.
 | 
						|
 | 
						|
     Returns UTF8-encoded output string or empty string if the code cannot be decoded.
 | 
						|
     @param img grayscale or color (BGR) image containing QR code.
 | 
						|
     @param points Quadrangle vertices found by detect() method (or some other algorithm).
 | 
						|
     @param straight_qrcode The optional output image containing rectified and binarized QR code
 | 
						|
     */
 | 
						|
    CV_WRAP std::string decode(InputArray img, InputArray points, OutputArray straight_qrcode = noArray());
 | 
						|
 | 
						|
    /** @brief Decodes QR code on a curved surface in image once it's found by the detect() method.
 | 
						|
 | 
						|
     Returns UTF8-encoded output string or empty string if the code cannot be decoded.
 | 
						|
     @param img grayscale or color (BGR) image containing QR code.
 | 
						|
     @param points Quadrangle vertices found by detect() method (or some other algorithm).
 | 
						|
     @param straight_qrcode The optional output image containing rectified and binarized QR code
 | 
						|
     */
 | 
						|
    CV_WRAP cv::String decodeCurved(InputArray img, InputArray points, OutputArray straight_qrcode = noArray());
 | 
						|
 | 
						|
    /** @brief Both detects and decodes QR code
 | 
						|
 | 
						|
     @param img grayscale or color (BGR) image containing QR code.
 | 
						|
     @param points optional output array of vertices of the found QR code quadrangle. Will be empty if not found.
 | 
						|
     @param straight_qrcode The optional output image containing rectified and binarized QR code
 | 
						|
     */
 | 
						|
    CV_WRAP std::string detectAndDecode(InputArray img, OutputArray points=noArray(),
 | 
						|
                                        OutputArray straight_qrcode = noArray());
 | 
						|
 | 
						|
    /** @brief Both detects and decodes QR code on a curved surface
 | 
						|
 | 
						|
     @param img grayscale or color (BGR) image containing QR code.
 | 
						|
     @param points optional output array of vertices of the found QR code quadrangle. Will be empty if not found.
 | 
						|
     @param straight_qrcode The optional output image containing rectified and binarized QR code
 | 
						|
     */
 | 
						|
    CV_WRAP std::string detectAndDecodeCurved(InputArray img, OutputArray points=noArray(),
 | 
						|
                                              OutputArray straight_qrcode = noArray());
 | 
						|
 | 
						|
    /** @brief Detects QR codes in image and returns the vector of the quadrangles containing the codes.
 | 
						|
     @param img grayscale or color (BGR) image containing (or not) QR codes.
 | 
						|
     @param points Output vector of vector of vertices of the minimum-area quadrangle containing the codes.
 | 
						|
     */
 | 
						|
    CV_WRAP
 | 
						|
    bool detectMulti(InputArray img, OutputArray points) const;
 | 
						|
 | 
						|
    /** @brief Decodes QR codes in image once it's found by the detect() method.
 | 
						|
     @param img grayscale or color (BGR) image containing QR codes.
 | 
						|
     @param decoded_info UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.
 | 
						|
     @param points vector of Quadrangle vertices found by detect() method (or some other algorithm).
 | 
						|
     @param straight_qrcode The optional output vector of images containing rectified and binarized QR codes
 | 
						|
     */
 | 
						|
    CV_WRAP
 | 
						|
    bool decodeMulti(
 | 
						|
            InputArray img, InputArray points,
 | 
						|
            CV_OUT std::vector<std::string>& decoded_info,
 | 
						|
            OutputArrayOfArrays straight_qrcode = noArray()
 | 
						|
    ) const;
 | 
						|
 | 
						|
    /** @brief Both detects and decodes QR codes
 | 
						|
    @param img grayscale or color (BGR) image containing QR codes.
 | 
						|
    @param decoded_info UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.
 | 
						|
    @param points optional output vector of vertices of the found QR code quadrangles. Will be empty if not found.
 | 
						|
    @param straight_qrcode The optional output vector of images containing rectified and binarized QR codes
 | 
						|
    */
 | 
						|
    CV_WRAP
 | 
						|
    bool detectAndDecodeMulti(
 | 
						|
            InputArray img, CV_OUT std::vector<std::string>& decoded_info,
 | 
						|
            OutputArray points = noArray(),
 | 
						|
            OutputArrayOfArrays straight_qrcode = noArray()
 | 
						|
    ) const;
 | 
						|
 | 
						|
protected:
 | 
						|
    struct Impl;
 | 
						|
    Ptr<Impl> p;
 | 
						|
};
 | 
						|
 | 
						|
//! @} objdetect
 | 
						|
}
 | 
						|
 | 
						|
#include "opencv2/objdetect/detection_based_tracker.hpp"
 | 
						|
#include "opencv2/objdetect/face.hpp"
 | 
						|
 | 
						|
#endif
 |