You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			254 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
			
		
		
	
	
			254 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                          License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#ifndef OPENCV_STITCHING_MATCHERS_HPP
 | 
						|
#define OPENCV_STITCHING_MATCHERS_HPP
 | 
						|
 | 
						|
#include "opencv2/core.hpp"
 | 
						|
#include "opencv2/features2d.hpp"
 | 
						|
 | 
						|
#include "opencv2/opencv_modules.hpp"
 | 
						|
 | 
						|
namespace cv {
 | 
						|
namespace detail {
 | 
						|
 | 
						|
//! @addtogroup stitching_match
 | 
						|
//! @{
 | 
						|
 | 
						|
/** @brief Structure containing image keypoints and descriptors. */
 | 
						|
struct CV_EXPORTS_W_SIMPLE ImageFeatures
 | 
						|
{
 | 
						|
    CV_PROP_RW int img_idx;
 | 
						|
    CV_PROP_RW Size img_size;
 | 
						|
    CV_PROP_RW std::vector<KeyPoint> keypoints;
 | 
						|
    CV_PROP_RW UMat descriptors;
 | 
						|
    CV_WRAP std::vector<KeyPoint> getKeypoints() { return keypoints; };
 | 
						|
};
 | 
						|
/** @brief
 | 
						|
 | 
						|
@param featuresFinder
 | 
						|
@param images
 | 
						|
@param features
 | 
						|
@param masks
 | 
						|
*/
 | 
						|
CV_EXPORTS_W void computeImageFeatures(
 | 
						|
    const Ptr<Feature2D> &featuresFinder,
 | 
						|
    InputArrayOfArrays  images,
 | 
						|
    CV_OUT std::vector<ImageFeatures> &features,
 | 
						|
    InputArrayOfArrays masks = noArray());
 | 
						|
 | 
						|
/** @brief
 | 
						|
 | 
						|
@param featuresFinder
 | 
						|
@param image
 | 
						|
@param features
 | 
						|
@param mask
 | 
						|
*/
 | 
						|
CV_EXPORTS_AS(computeImageFeatures2) void computeImageFeatures(
 | 
						|
    const Ptr<Feature2D> &featuresFinder,
 | 
						|
    InputArray image,
 | 
						|
    CV_OUT ImageFeatures &features,
 | 
						|
    InputArray mask = noArray());
 | 
						|
 | 
						|
/** @brief Structure containing information about matches between two images.
 | 
						|
 | 
						|
It's assumed that there is a transformation between those images. Transformation may be
 | 
						|
homography or affine transformation based on selected matcher.
 | 
						|
 | 
						|
@sa detail::FeaturesMatcher
 | 
						|
*/
 | 
						|
struct CV_EXPORTS_W_SIMPLE MatchesInfo
 | 
						|
{
 | 
						|
    MatchesInfo();
 | 
						|
    MatchesInfo(const MatchesInfo &other);
 | 
						|
    MatchesInfo& operator =(const MatchesInfo &other);
 | 
						|
 | 
						|
    CV_PROP_RW int src_img_idx;
 | 
						|
    CV_PROP_RW int dst_img_idx;       //!< Images indices (optional)
 | 
						|
    std::vector<DMatch> matches;
 | 
						|
    std::vector<uchar> inliers_mask;    //!< Geometrically consistent matches mask
 | 
						|
    CV_PROP_RW int num_inliers;                    //!< Number of geometrically consistent matches
 | 
						|
    CV_PROP_RW Mat H;                              //!< Estimated transformation
 | 
						|
    CV_PROP_RW double confidence;                  //!< Confidence two images are from the same panorama
 | 
						|
    CV_WRAP std::vector<DMatch> getMatches() { return matches; };
 | 
						|
    CV_WRAP std::vector<uchar> getInliers() { return inliers_mask; };
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Feature matchers base class. */
 | 
						|
class CV_EXPORTS_W FeaturesMatcher
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP virtual ~FeaturesMatcher() {}
 | 
						|
 | 
						|
    /** @overload
 | 
						|
    @param features1 First image features
 | 
						|
    @param features2 Second image features
 | 
						|
    @param matches_info Found matches
 | 
						|
    */
 | 
						|
    CV_WRAP_AS(apply) void operator ()(const ImageFeatures &features1, const ImageFeatures &features2,
 | 
						|
                     CV_OUT MatchesInfo& matches_info) { match(features1, features2, matches_info); }
 | 
						|
 | 
						|
    /** @brief Performs images matching.
 | 
						|
 | 
						|
    @param features Features of the source images
 | 
						|
    @param pairwise_matches Found pairwise matches
 | 
						|
    @param mask Mask indicating which image pairs must be matched
 | 
						|
 | 
						|
    The function is parallelized with the TBB library.
 | 
						|
 | 
						|
    @sa detail::MatchesInfo
 | 
						|
    */
 | 
						|
    CV_WRAP_AS(apply2) void operator ()(const std::vector<ImageFeatures> &features, CV_OUT std::vector<MatchesInfo> &pairwise_matches,
 | 
						|
                     const cv::UMat &mask = cv::UMat());
 | 
						|
 | 
						|
    /** @return True, if it's possible to use the same matcher instance in parallel, false otherwise
 | 
						|
    */
 | 
						|
   CV_WRAP bool isThreadSafe() const { return is_thread_safe_; }
 | 
						|
 | 
						|
    /** @brief Frees unused memory allocated before if there is any.
 | 
						|
    */
 | 
						|
   CV_WRAP virtual void collectGarbage() {}
 | 
						|
 | 
						|
protected:
 | 
						|
    FeaturesMatcher(bool is_thread_safe = false) : is_thread_safe_(is_thread_safe) {}
 | 
						|
 | 
						|
    /** @brief This method must implement matching logic in order to make the wrappers
 | 
						|
    detail::FeaturesMatcher::operator()_ work.
 | 
						|
 | 
						|
    @param features1 first image features
 | 
						|
    @param features2 second image features
 | 
						|
    @param matches_info found matches
 | 
						|
     */
 | 
						|
    virtual void match(const ImageFeatures &features1, const ImageFeatures &features2,
 | 
						|
                       MatchesInfo& matches_info) = 0;
 | 
						|
 | 
						|
    bool is_thread_safe_;
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Features matcher which finds two best matches for each feature and leaves the best one only if the
 | 
						|
ratio between descriptor distances is greater than the threshold match_conf
 | 
						|
 | 
						|
@sa detail::FeaturesMatcher
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W BestOf2NearestMatcher : public FeaturesMatcher
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** @brief Constructs a "best of 2 nearest" matcher.
 | 
						|
 | 
						|
    @param try_use_gpu Should try to use GPU or not
 | 
						|
    @param match_conf Match distances ration threshold
 | 
						|
    @param num_matches_thresh1 Minimum number of matches required for the 2D projective transform
 | 
						|
    estimation used in the inliers classification step
 | 
						|
    @param num_matches_thresh2 Minimum number of matches required for the 2D projective transform
 | 
						|
    re-estimation on inliers
 | 
						|
     */
 | 
						|
    CV_WRAP BestOf2NearestMatcher(bool try_use_gpu = false, float match_conf = 0.3f, int num_matches_thresh1 = 6,
 | 
						|
                          int num_matches_thresh2 = 6);
 | 
						|
 | 
						|
    CV_WRAP void collectGarbage() CV_OVERRIDE;
 | 
						|
    CV_WRAP static Ptr<BestOf2NearestMatcher> create(bool try_use_gpu = false, float match_conf = 0.3f, int num_matches_thresh1 = 6,
 | 
						|
        int num_matches_thresh2 = 6);
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
    void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info) CV_OVERRIDE;
 | 
						|
    int num_matches_thresh1_;
 | 
						|
    int num_matches_thresh2_;
 | 
						|
    Ptr<FeaturesMatcher> impl_;
 | 
						|
};
 | 
						|
 | 
						|
class CV_EXPORTS_W BestOf2NearestRangeMatcher : public BestOf2NearestMatcher
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP BestOf2NearestRangeMatcher(int range_width = 5, bool try_use_gpu = false, float match_conf = 0.3f,
 | 
						|
                            int num_matches_thresh1 = 6, int num_matches_thresh2 = 6);
 | 
						|
 | 
						|
    void operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
 | 
						|
                     const cv::UMat &mask = cv::UMat());
 | 
						|
 | 
						|
 | 
						|
protected:
 | 
						|
    int range_width_;
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Features matcher similar to cv::detail::BestOf2NearestMatcher which
 | 
						|
finds two best matches for each feature and leaves the best one only if the
 | 
						|
ratio between descriptor distances is greater than the threshold match_conf.
 | 
						|
 | 
						|
Unlike cv::detail::BestOf2NearestMatcher this matcher uses affine
 | 
						|
transformation (affine transformation estimate will be placed in matches_info).
 | 
						|
 | 
						|
@sa cv::detail::FeaturesMatcher cv::detail::BestOf2NearestMatcher
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W AffineBestOf2NearestMatcher : public BestOf2NearestMatcher
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** @brief Constructs a "best of 2 nearest" matcher that expects affine transformation
 | 
						|
    between images
 | 
						|
 | 
						|
    @param full_affine whether to use full affine transformation with 6 degress of freedom or reduced
 | 
						|
    transformation with 4 degrees of freedom using only rotation, translation and uniform scaling
 | 
						|
    @param try_use_gpu Should try to use GPU or not
 | 
						|
    @param match_conf Match distances ration threshold
 | 
						|
    @param num_matches_thresh1 Minimum number of matches required for the 2D affine transform
 | 
						|
    estimation used in the inliers classification step
 | 
						|
 | 
						|
    @sa cv::estimateAffine2D cv::estimateAffinePartial2D
 | 
						|
     */
 | 
						|
    CV_WRAP AffineBestOf2NearestMatcher(bool full_affine = false, bool try_use_gpu = false,
 | 
						|
                                float match_conf = 0.3f, int num_matches_thresh1 = 6) :
 | 
						|
        BestOf2NearestMatcher(try_use_gpu, match_conf, num_matches_thresh1, num_matches_thresh1),
 | 
						|
        full_affine_(full_affine) {}
 | 
						|
 | 
						|
protected:
 | 
						|
    void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info) CV_OVERRIDE;
 | 
						|
 | 
						|
    bool full_affine_;
 | 
						|
};
 | 
						|
 | 
						|
//! @} stitching_match
 | 
						|
 | 
						|
} // namespace detail
 | 
						|
} // namespace cv
 | 
						|
 | 
						|
#endif // OPENCV_STITCHING_MATCHERS_HPP
 |