You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			858 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
			
		
		
	
	
			858 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                          License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#ifndef OPENCV_TRACKING_HPP
 | 
						|
#define OPENCV_TRACKING_HPP
 | 
						|
 | 
						|
#include "opencv2/core.hpp"
 | 
						|
#include "opencv2/imgproc.hpp"
 | 
						|
 | 
						|
namespace cv
 | 
						|
{
 | 
						|
 | 
						|
//! @addtogroup video_track
 | 
						|
//! @{
 | 
						|
 | 
						|
enum { OPTFLOW_USE_INITIAL_FLOW     = 4,
 | 
						|
       OPTFLOW_LK_GET_MIN_EIGENVALS = 8,
 | 
						|
       OPTFLOW_FARNEBACK_GAUSSIAN   = 256
 | 
						|
     };
 | 
						|
 | 
						|
/** @brief Finds an object center, size, and orientation.
 | 
						|
 | 
						|
@param probImage Back projection of the object histogram. See calcBackProject.
 | 
						|
@param window Initial search window.
 | 
						|
@param criteria Stop criteria for the underlying meanShift.
 | 
						|
returns
 | 
						|
(in old interfaces) Number of iterations CAMSHIFT took to converge
 | 
						|
The function implements the CAMSHIFT object tracking algorithm @cite Bradski98 . First, it finds an
 | 
						|
object center using meanShift and then adjusts the window size and finds the optimal rotation. The
 | 
						|
function returns the rotated rectangle structure that includes the object position, size, and
 | 
						|
orientation. The next position of the search window can be obtained with RotatedRect::boundingRect()
 | 
						|
 | 
						|
See the OpenCV sample camshiftdemo.c that tracks colored objects.
 | 
						|
 | 
						|
@note
 | 
						|
-   (Python) A sample explaining the camshift tracking algorithm can be found at
 | 
						|
    opencv_source_code/samples/python/camshift.py
 | 
						|
 */
 | 
						|
CV_EXPORTS_W RotatedRect CamShift( InputArray probImage, CV_IN_OUT Rect& window,
 | 
						|
                                   TermCriteria criteria );
 | 
						|
/** @example samples/cpp/camshiftdemo.cpp
 | 
						|
An example using the mean-shift tracking algorithm
 | 
						|
*/
 | 
						|
 | 
						|
/** @brief Finds an object on a back projection image.
 | 
						|
 | 
						|
@param probImage Back projection of the object histogram. See calcBackProject for details.
 | 
						|
@param window Initial search window.
 | 
						|
@param criteria Stop criteria for the iterative search algorithm.
 | 
						|
returns
 | 
						|
:   Number of iterations CAMSHIFT took to converge.
 | 
						|
The function implements the iterative object search algorithm. It takes the input back projection of
 | 
						|
an object and the initial position. The mass center in window of the back projection image is
 | 
						|
computed and the search window center shifts to the mass center. The procedure is repeated until the
 | 
						|
specified number of iterations criteria.maxCount is done or until the window center shifts by less
 | 
						|
than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search
 | 
						|
window size or orientation do not change during the search. You can simply pass the output of
 | 
						|
calcBackProject to this function. But better results can be obtained if you pre-filter the back
 | 
						|
projection and remove the noise. For example, you can do this by retrieving connected components
 | 
						|
with findContours , throwing away contours with small area ( contourArea ), and rendering the
 | 
						|
remaining contours with drawContours.
 | 
						|
 | 
						|
 */
 | 
						|
CV_EXPORTS_W int meanShift( InputArray probImage, CV_IN_OUT Rect& window, TermCriteria criteria );
 | 
						|
 | 
						|
/** @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
 | 
						|
 | 
						|
@param img 8-bit input image.
 | 
						|
@param pyramid output pyramid.
 | 
						|
@param winSize window size of optical flow algorithm. Must be not less than winSize argument of
 | 
						|
calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
 | 
						|
@param maxLevel 0-based maximal pyramid level number.
 | 
						|
@param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
 | 
						|
constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
 | 
						|
@param pyrBorder the border mode for pyramid layers.
 | 
						|
@param derivBorder the border mode for gradients.
 | 
						|
@param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
 | 
						|
to force data copying.
 | 
						|
@return number of levels in constructed pyramid. Can be less than maxLevel.
 | 
						|
 */
 | 
						|
CV_EXPORTS_W int buildOpticalFlowPyramid( InputArray img, OutputArrayOfArrays pyramid,
 | 
						|
                                          Size winSize, int maxLevel, bool withDerivatives = true,
 | 
						|
                                          int pyrBorder = BORDER_REFLECT_101,
 | 
						|
                                          int derivBorder = BORDER_CONSTANT,
 | 
						|
                                          bool tryReuseInputImage = true );
 | 
						|
 | 
						|
/** @example samples/cpp/lkdemo.cpp
 | 
						|
An example using the Lucas-Kanade optical flow algorithm
 | 
						|
*/
 | 
						|
 | 
						|
/** @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
 | 
						|
pyramids.
 | 
						|
 | 
						|
@param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
 | 
						|
@param nextImg second input image or pyramid of the same size and the same type as prevImg.
 | 
						|
@param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
 | 
						|
single-precision floating-point numbers.
 | 
						|
@param nextPts output vector of 2D points (with single-precision floating-point coordinates)
 | 
						|
containing the calculated new positions of input features in the second image; when
 | 
						|
OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
 | 
						|
@param status output status vector (of unsigned chars); each element of the vector is set to 1 if
 | 
						|
the flow for the corresponding features has been found, otherwise, it is set to 0.
 | 
						|
@param err output vector of errors; each element of the vector is set to an error for the
 | 
						|
corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
 | 
						|
found then the error is not defined (use the status parameter to find such cases).
 | 
						|
@param winSize size of the search window at each pyramid level.
 | 
						|
@param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
 | 
						|
level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
 | 
						|
algorithm will use as many levels as pyramids have but no more than maxLevel.
 | 
						|
@param criteria parameter, specifying the termination criteria of the iterative search algorithm
 | 
						|
(after the specified maximum number of iterations criteria.maxCount or when the search window
 | 
						|
moves by less than criteria.epsilon.
 | 
						|
@param flags operation flags:
 | 
						|
 -   **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
 | 
						|
     not set, then prevPts is copied to nextPts and is considered the initial estimate.
 | 
						|
 -   **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
 | 
						|
     minEigThreshold description); if the flag is not set, then L1 distance between patches
 | 
						|
     around the original and a moved point, divided by number of pixels in a window, is used as a
 | 
						|
     error measure.
 | 
						|
@param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
 | 
						|
optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
 | 
						|
by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
 | 
						|
feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
 | 
						|
performance boost.
 | 
						|
 | 
						|
The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
 | 
						|
@cite Bouguet00 . The function is parallelized with the TBB library.
 | 
						|
 | 
						|
@note
 | 
						|
 | 
						|
-   An example using the Lucas-Kanade optical flow algorithm can be found at
 | 
						|
    opencv_source_code/samples/cpp/lkdemo.cpp
 | 
						|
-   (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
 | 
						|
    opencv_source_code/samples/python/lk_track.py
 | 
						|
-   (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
 | 
						|
    opencv_source_code/samples/python/lk_homography.py
 | 
						|
 */
 | 
						|
CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
 | 
						|
                                        InputArray prevPts, InputOutputArray nextPts,
 | 
						|
                                        OutputArray status, OutputArray err,
 | 
						|
                                        Size winSize = Size(21,21), int maxLevel = 3,
 | 
						|
                                        TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
 | 
						|
                                        int flags = 0, double minEigThreshold = 1e-4 );
 | 
						|
 | 
						|
/** @brief Computes a dense optical flow using the Gunnar Farneback's algorithm.
 | 
						|
 | 
						|
@param prev first 8-bit single-channel input image.
 | 
						|
@param next second input image of the same size and the same type as prev.
 | 
						|
@param flow computed flow image that has the same size as prev and type CV_32FC2.
 | 
						|
@param pyr_scale parameter, specifying the image scale (\<1) to build pyramids for each image;
 | 
						|
pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
 | 
						|
one.
 | 
						|
@param levels number of pyramid layers including the initial image; levels=1 means that no extra
 | 
						|
layers are created and only the original images are used.
 | 
						|
@param winsize averaging window size; larger values increase the algorithm robustness to image
 | 
						|
noise and give more chances for fast motion detection, but yield more blurred motion field.
 | 
						|
@param iterations number of iterations the algorithm does at each pyramid level.
 | 
						|
@param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel;
 | 
						|
larger values mean that the image will be approximated with smoother surfaces, yielding more
 | 
						|
robust algorithm and more blurred motion field, typically poly_n =5 or 7.
 | 
						|
@param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a
 | 
						|
basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a
 | 
						|
good value would be poly_sigma=1.5.
 | 
						|
@param flags operation flags that can be a combination of the following:
 | 
						|
 -   **OPTFLOW_USE_INITIAL_FLOW** uses the input flow as an initial flow approximation.
 | 
						|
 -   **OPTFLOW_FARNEBACK_GAUSSIAN** uses the Gaussian \f$\texttt{winsize}\times\texttt{winsize}\f$
 | 
						|
     filter instead of a box filter of the same size for optical flow estimation; usually, this
 | 
						|
     option gives z more accurate flow than with a box filter, at the cost of lower speed;
 | 
						|
     normally, winsize for a Gaussian window should be set to a larger value to achieve the same
 | 
						|
     level of robustness.
 | 
						|
 | 
						|
The function finds an optical flow for each prev pixel using the @cite Farneback2003 algorithm so that
 | 
						|
 | 
						|
\f[\texttt{prev} (y,x)  \sim \texttt{next} ( y + \texttt{flow} (y,x)[1],  x + \texttt{flow} (y,x)[0])\f]
 | 
						|
 | 
						|
@note
 | 
						|
 | 
						|
-   An example using the optical flow algorithm described by Gunnar Farneback can be found at
 | 
						|
    opencv_source_code/samples/cpp/fback.cpp
 | 
						|
-   (Python) An example using the optical flow algorithm described by Gunnar Farneback can be
 | 
						|
    found at opencv_source_code/samples/python/opt_flow.py
 | 
						|
 */
 | 
						|
CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next, InputOutputArray flow,
 | 
						|
                                            double pyr_scale, int levels, int winsize,
 | 
						|
                                            int iterations, int poly_n, double poly_sigma,
 | 
						|
                                            int flags );
 | 
						|
 | 
						|
/** @brief Computes an optimal affine transformation between two 2D point sets.
 | 
						|
 | 
						|
@param src First input 2D point set stored in std::vector or Mat, or an image stored in Mat.
 | 
						|
@param dst Second input 2D point set of the same size and the same type as A, or another image.
 | 
						|
@param fullAffine If true, the function finds an optimal affine transformation with no additional
 | 
						|
restrictions (6 degrees of freedom). Otherwise, the class of transformations to choose from is
 | 
						|
limited to combinations of translation, rotation, and uniform scaling (4 degrees of freedom).
 | 
						|
 | 
						|
The function finds an optimal affine transform *[A|b]* (a 2 x 3 floating-point matrix) that
 | 
						|
approximates best the affine transformation between:
 | 
						|
 | 
						|
*   Two point sets
 | 
						|
*   Two raster images. In this case, the function first finds some features in the src image and
 | 
						|
    finds the corresponding features in dst image. After that, the problem is reduced to the first
 | 
						|
    case.
 | 
						|
In case of point sets, the problem is formulated as follows: you need to find a 2x2 matrix *A* and
 | 
						|
2x1 vector *b* so that:
 | 
						|
 | 
						|
\f[[A^*|b^*] = arg  \min _{[A|b]}  \sum _i  \| \texttt{dst}[i] - A { \texttt{src}[i]}^T - b  \| ^2\f]
 | 
						|
where src[i] and dst[i] are the i-th points in src and dst, respectively
 | 
						|
\f$[A|b]\f$ can be either arbitrary (when fullAffine=true ) or have a form of
 | 
						|
\f[\begin{bmatrix} a_{11} & a_{12} & b_1  \\ -a_{12} & a_{11} & b_2  \end{bmatrix}\f]
 | 
						|
when fullAffine=false.
 | 
						|
 | 
						|
@deprecated Use cv::estimateAffine2D, cv::estimateAffinePartial2D instead. If you are using this function
 | 
						|
with images, extract points using cv::calcOpticalFlowPyrLK and then use the estimation functions.
 | 
						|
 | 
						|
@sa
 | 
						|
estimateAffine2D, estimateAffinePartial2D, getAffineTransform, getPerspectiveTransform, findHomography
 | 
						|
 */
 | 
						|
CV_DEPRECATED CV_EXPORTS Mat estimateRigidTransform( InputArray src, InputArray dst, bool fullAffine );
 | 
						|
 | 
						|
enum
 | 
						|
{
 | 
						|
    MOTION_TRANSLATION = 0,
 | 
						|
    MOTION_EUCLIDEAN   = 1,
 | 
						|
    MOTION_AFFINE      = 2,
 | 
						|
    MOTION_HOMOGRAPHY  = 3
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Computes the Enhanced Correlation Coefficient value between two images @cite EP08 .
 | 
						|
 | 
						|
@param templateImage single-channel template image; CV_8U or CV_32F array.
 | 
						|
@param inputImage single-channel input image to be warped to provide an image similar to
 | 
						|
 templateImage, same type as templateImage.
 | 
						|
@param inputMask An optional mask to indicate valid values of inputImage.
 | 
						|
 | 
						|
@sa
 | 
						|
findTransformECC
 | 
						|
 */
 | 
						|
 | 
						|
CV_EXPORTS_W double computeECC(InputArray templateImage, InputArray inputImage, InputArray inputMask = noArray());
 | 
						|
 | 
						|
/** @example samples/cpp/image_alignment.cpp
 | 
						|
An example using the image alignment ECC algorithm
 | 
						|
*/
 | 
						|
 | 
						|
/** @brief Finds the geometric transform (warp) between two images in terms of the ECC criterion @cite EP08 .
 | 
						|
 | 
						|
@param templateImage single-channel template image; CV_8U or CV_32F array.
 | 
						|
@param inputImage single-channel input image which should be warped with the final warpMatrix in
 | 
						|
order to provide an image similar to templateImage, same type as templateImage.
 | 
						|
@param warpMatrix floating-point \f$2\times 3\f$ or \f$3\times 3\f$ mapping matrix (warp).
 | 
						|
@param motionType parameter, specifying the type of motion:
 | 
						|
 -   **MOTION_TRANSLATION** sets a translational motion model; warpMatrix is \f$2\times 3\f$ with
 | 
						|
     the first \f$2\times 2\f$ part being the unity matrix and the rest two parameters being
 | 
						|
     estimated.
 | 
						|
 -   **MOTION_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three
 | 
						|
     parameters are estimated; warpMatrix is \f$2\times 3\f$.
 | 
						|
 -   **MOTION_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated;
 | 
						|
     warpMatrix is \f$2\times 3\f$.
 | 
						|
 -   **MOTION_HOMOGRAPHY** sets a homography as a motion model; eight parameters are
 | 
						|
     estimated;\`warpMatrix\` is \f$3\times 3\f$.
 | 
						|
@param criteria parameter, specifying the termination criteria of the ECC algorithm;
 | 
						|
criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
 | 
						|
iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
 | 
						|
Default values are shown in the declaration above.
 | 
						|
@param inputMask An optional mask to indicate valid values of inputImage.
 | 
						|
@param gaussFiltSize An optional value indicating size of gaussian blur filter; (DEFAULT: 5)
 | 
						|
 | 
						|
The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
 | 
						|
(@cite EP08), that is
 | 
						|
 | 
						|
\f[\texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\f]
 | 
						|
 | 
						|
where
 | 
						|
 | 
						|
\f[\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\f]
 | 
						|
 | 
						|
(the equation holds with homogeneous coordinates for homography). It returns the final enhanced
 | 
						|
correlation coefficient, that is the correlation coefficient between the template image and the
 | 
						|
final warped input image. When a \f$3\times 3\f$ matrix is given with motionType =0, 1 or 2, the third
 | 
						|
row is ignored.
 | 
						|
 | 
						|
Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
 | 
						|
area-based alignment that builds on intensity similarities. In essence, the function updates the
 | 
						|
initial transformation that roughly aligns the images. If this information is missing, the identity
 | 
						|
warp (unity matrix) is used as an initialization. Note that if images undergo strong
 | 
						|
displacements/rotations, an initial transformation that roughly aligns the images is necessary
 | 
						|
(e.g., a simple euclidean/similarity transform that allows for the images showing the same image
 | 
						|
content approximately). Use inverse warping in the second image to take an image close to the first
 | 
						|
one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV
 | 
						|
sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws
 | 
						|
an exception if algorithm does not converges.
 | 
						|
 | 
						|
@sa
 | 
						|
computeECC, estimateAffine2D, estimateAffinePartial2D, findHomography
 | 
						|
 */
 | 
						|
CV_EXPORTS_W double findTransformECC( InputArray templateImage, InputArray inputImage,
 | 
						|
                                      InputOutputArray warpMatrix, int motionType,
 | 
						|
                                      TermCriteria criteria,
 | 
						|
                                      InputArray inputMask, int gaussFiltSize);
 | 
						|
 | 
						|
/** @overload */
 | 
						|
CV_EXPORTS_W
 | 
						|
double findTransformECC(InputArray templateImage, InputArray inputImage,
 | 
						|
    InputOutputArray warpMatrix, int motionType = MOTION_AFFINE,
 | 
						|
    TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001),
 | 
						|
    InputArray inputMask = noArray());
 | 
						|
 | 
						|
/** @example samples/cpp/kalman.cpp
 | 
						|
An example using the standard Kalman filter
 | 
						|
*/
 | 
						|
 | 
						|
/** @brief Kalman filter class.
 | 
						|
 | 
						|
The class implements a standard Kalman filter <http://en.wikipedia.org/wiki/Kalman_filter>,
 | 
						|
@cite Welch95 . However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get
 | 
						|
an extended Kalman filter functionality.
 | 
						|
@note In C API when CvKalman\* kalmanFilter structure is not needed anymore, it should be released
 | 
						|
with cvReleaseKalman(&kalmanFilter)
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W KalmanFilter
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP KalmanFilter();
 | 
						|
    /** @overload
 | 
						|
    @param dynamParams Dimensionality of the state.
 | 
						|
    @param measureParams Dimensionality of the measurement.
 | 
						|
    @param controlParams Dimensionality of the control vector.
 | 
						|
    @param type Type of the created matrices that should be CV_32F or CV_64F.
 | 
						|
    */
 | 
						|
    CV_WRAP KalmanFilter( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
 | 
						|
 | 
						|
    /** @brief Re-initializes Kalman filter. The previous content is destroyed.
 | 
						|
 | 
						|
    @param dynamParams Dimensionality of the state.
 | 
						|
    @param measureParams Dimensionality of the measurement.
 | 
						|
    @param controlParams Dimensionality of the control vector.
 | 
						|
    @param type Type of the created matrices that should be CV_32F or CV_64F.
 | 
						|
     */
 | 
						|
    void init( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
 | 
						|
 | 
						|
    /** @brief Computes a predicted state.
 | 
						|
 | 
						|
    @param control The optional input control
 | 
						|
     */
 | 
						|
    CV_WRAP const Mat& predict( const Mat& control = Mat() );
 | 
						|
 | 
						|
    /** @brief Updates the predicted state from the measurement.
 | 
						|
 | 
						|
    @param measurement The measured system parameters
 | 
						|
     */
 | 
						|
    CV_WRAP const Mat& correct( const Mat& measurement );
 | 
						|
 | 
						|
    CV_PROP_RW Mat statePre;           //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
 | 
						|
    CV_PROP_RW Mat statePost;          //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
 | 
						|
    CV_PROP_RW Mat transitionMatrix;   //!< state transition matrix (A)
 | 
						|
    CV_PROP_RW Mat controlMatrix;      //!< control matrix (B) (not used if there is no control)
 | 
						|
    CV_PROP_RW Mat measurementMatrix;  //!< measurement matrix (H)
 | 
						|
    CV_PROP_RW Mat processNoiseCov;    //!< process noise covariance matrix (Q)
 | 
						|
    CV_PROP_RW Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
 | 
						|
    CV_PROP_RW Mat errorCovPre;        //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
 | 
						|
    CV_PROP_RW Mat gain;               //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
 | 
						|
    CV_PROP_RW Mat errorCovPost;       //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
 | 
						|
 | 
						|
    // temporary matrices
 | 
						|
    Mat temp1;
 | 
						|
    Mat temp2;
 | 
						|
    Mat temp3;
 | 
						|
    Mat temp4;
 | 
						|
    Mat temp5;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/** @brief Read a .flo file
 | 
						|
 | 
						|
 @param path Path to the file to be loaded
 | 
						|
 | 
						|
 The function readOpticalFlow loads a flow field from a file and returns it as a single matrix.
 | 
						|
 Resulting Mat has a type CV_32FC2 - floating-point, 2-channel. First channel corresponds to the
 | 
						|
 flow in the horizontal direction (u), second - vertical (v).
 | 
						|
 */
 | 
						|
CV_EXPORTS_W Mat readOpticalFlow( const String& path );
 | 
						|
/** @brief Write a .flo to disk
 | 
						|
 | 
						|
 @param path Path to the file to be written
 | 
						|
 @param flow Flow field to be stored
 | 
						|
 | 
						|
 The function stores a flow field in a file, returns true on success, false otherwise.
 | 
						|
 The flow field must be a 2-channel, floating-point matrix (CV_32FC2). First channel corresponds
 | 
						|
 to the flow in the horizontal direction (u), second - vertical (v).
 | 
						|
 */
 | 
						|
CV_EXPORTS_W bool writeOpticalFlow( const String& path, InputArray flow );
 | 
						|
 | 
						|
/**
 | 
						|
   Base class for dense optical flow algorithms
 | 
						|
*/
 | 
						|
class CV_EXPORTS_W DenseOpticalFlow : public Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** @brief Calculates an optical flow.
 | 
						|
 | 
						|
    @param I0 first 8-bit single-channel input image.
 | 
						|
    @param I1 second input image of the same size and the same type as prev.
 | 
						|
    @param flow computed flow image that has the same size as prev and type CV_32FC2.
 | 
						|
     */
 | 
						|
    CV_WRAP virtual void calc( InputArray I0, InputArray I1, InputOutputArray flow ) = 0;
 | 
						|
    /** @brief Releases all inner buffers.
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void collectGarbage() = 0;
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Base interface for sparse optical flow algorithms.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W SparseOpticalFlow : public Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** @brief Calculates a sparse optical flow.
 | 
						|
 | 
						|
    @param prevImg First input image.
 | 
						|
    @param nextImg Second input image of the same size and the same type as prevImg.
 | 
						|
    @param prevPts Vector of 2D points for which the flow needs to be found.
 | 
						|
    @param nextPts Output vector of 2D points containing the calculated new positions of input features in the second image.
 | 
						|
    @param status Output status vector. Each element of the vector is set to 1 if the
 | 
						|
                  flow for the corresponding features has been found. Otherwise, it is set to 0.
 | 
						|
    @param err Optional output vector that contains error response for each point (inverse confidence).
 | 
						|
     */
 | 
						|
    CV_WRAP virtual void calc(InputArray prevImg, InputArray nextImg,
 | 
						|
                      InputArray prevPts, InputOutputArray nextPts,
 | 
						|
                      OutputArray status,
 | 
						|
                      OutputArray err = cv::noArray()) = 0;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/** @brief Class computing a dense optical flow using the Gunnar Farneback's algorithm.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W FarnebackOpticalFlow : public DenseOpticalFlow
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP virtual int getNumLevels() const = 0;
 | 
						|
    CV_WRAP virtual void setNumLevels(int numLevels) = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual double getPyrScale() const = 0;
 | 
						|
    CV_WRAP virtual void setPyrScale(double pyrScale) = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual bool getFastPyramids() const = 0;
 | 
						|
    CV_WRAP virtual void setFastPyramids(bool fastPyramids) = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual int getWinSize() const = 0;
 | 
						|
    CV_WRAP virtual void setWinSize(int winSize) = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual int getNumIters() const = 0;
 | 
						|
    CV_WRAP virtual void setNumIters(int numIters) = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual int getPolyN() const = 0;
 | 
						|
    CV_WRAP virtual void setPolyN(int polyN) = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual double getPolySigma() const = 0;
 | 
						|
    CV_WRAP virtual void setPolySigma(double polySigma) = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual int getFlags() const = 0;
 | 
						|
    CV_WRAP virtual void setFlags(int flags) = 0;
 | 
						|
 | 
						|
    CV_WRAP static Ptr<FarnebackOpticalFlow> create(
 | 
						|
            int numLevels = 5,
 | 
						|
            double pyrScale = 0.5,
 | 
						|
            bool fastPyramids = false,
 | 
						|
            int winSize = 13,
 | 
						|
            int numIters = 10,
 | 
						|
            int polyN = 5,
 | 
						|
            double polySigma = 1.1,
 | 
						|
            int flags = 0);
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Variational optical flow refinement
 | 
						|
 | 
						|
This class implements variational refinement of the input flow field, i.e.
 | 
						|
it uses input flow to initialize the minimization of the following functional:
 | 
						|
\f$E(U) = \int_{\Omega} \delta \Psi(E_I) + \gamma \Psi(E_G) + \alpha \Psi(E_S) \f$,
 | 
						|
where \f$E_I,E_G,E_S\f$ are color constancy, gradient constancy and smoothness terms
 | 
						|
respectively. \f$\Psi(s^2)=\sqrt{s^2+\epsilon^2}\f$ is a robust penalizer to limit the
 | 
						|
influence of outliers. A complete formulation and a description of the minimization
 | 
						|
procedure can be found in @cite Brox2004
 | 
						|
*/
 | 
						|
class CV_EXPORTS_W VariationalRefinement : public DenseOpticalFlow
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** @brief @ref calc function overload to handle separate horizontal (u) and vertical (v) flow components
 | 
						|
    (to avoid extra splits/merges) */
 | 
						|
    CV_WRAP virtual void calcUV(InputArray I0, InputArray I1, InputOutputArray flow_u, InputOutputArray flow_v) = 0;
 | 
						|
 | 
						|
    /** @brief Number of outer (fixed-point) iterations in the minimization procedure.
 | 
						|
    @see setFixedPointIterations */
 | 
						|
    CV_WRAP virtual int getFixedPointIterations() const = 0;
 | 
						|
    /** @copybrief getFixedPointIterations @see getFixedPointIterations */
 | 
						|
    CV_WRAP virtual void setFixedPointIterations(int val) = 0;
 | 
						|
 | 
						|
    /** @brief Number of inner successive over-relaxation (SOR) iterations
 | 
						|
        in the minimization procedure to solve the respective linear system.
 | 
						|
    @see setSorIterations */
 | 
						|
    CV_WRAP virtual int getSorIterations() const = 0;
 | 
						|
    /** @copybrief getSorIterations @see getSorIterations */
 | 
						|
    CV_WRAP virtual void setSorIterations(int val) = 0;
 | 
						|
 | 
						|
    /** @brief Relaxation factor in SOR
 | 
						|
    @see setOmega */
 | 
						|
    CV_WRAP virtual float getOmega() const = 0;
 | 
						|
    /** @copybrief getOmega @see getOmega */
 | 
						|
    CV_WRAP virtual void setOmega(float val) = 0;
 | 
						|
 | 
						|
    /** @brief Weight of the smoothness term
 | 
						|
    @see setAlpha */
 | 
						|
    CV_WRAP virtual float getAlpha() const = 0;
 | 
						|
    /** @copybrief getAlpha @see getAlpha */
 | 
						|
    CV_WRAP virtual void setAlpha(float val) = 0;
 | 
						|
 | 
						|
    /** @brief Weight of the color constancy term
 | 
						|
    @see setDelta */
 | 
						|
    CV_WRAP virtual float getDelta() const = 0;
 | 
						|
    /** @copybrief getDelta @see getDelta */
 | 
						|
    CV_WRAP virtual void setDelta(float val) = 0;
 | 
						|
 | 
						|
    /** @brief Weight of the gradient constancy term
 | 
						|
    @see setGamma */
 | 
						|
    CV_WRAP virtual float getGamma() const = 0;
 | 
						|
    /** @copybrief getGamma @see getGamma */
 | 
						|
    CV_WRAP virtual void setGamma(float val) = 0;
 | 
						|
 | 
						|
    /** @brief Creates an instance of VariationalRefinement
 | 
						|
    */
 | 
						|
    CV_WRAP static Ptr<VariationalRefinement> create();
 | 
						|
};
 | 
						|
 | 
						|
/** @brief DIS optical flow algorithm.
 | 
						|
 | 
						|
This class implements the Dense Inverse Search (DIS) optical flow algorithm. More
 | 
						|
details about the algorithm can be found at @cite Kroeger2016 . Includes three presets with preselected
 | 
						|
parameters to provide reasonable trade-off between speed and quality. However, even the slowest preset is
 | 
						|
still relatively fast, use DeepFlow if you need better quality and don't care about speed.
 | 
						|
 | 
						|
This implementation includes several additional features compared to the algorithm described in the paper,
 | 
						|
including spatial propagation of flow vectors (@ref getUseSpatialPropagation), as well as an option to
 | 
						|
utilize an initial flow approximation passed to @ref calc (which is, essentially, temporal propagation,
 | 
						|
if the previous frame's flow field is passed).
 | 
						|
*/
 | 
						|
class CV_EXPORTS_W DISOpticalFlow : public DenseOpticalFlow
 | 
						|
{
 | 
						|
public:
 | 
						|
    enum
 | 
						|
    {
 | 
						|
        PRESET_ULTRAFAST = 0,
 | 
						|
        PRESET_FAST = 1,
 | 
						|
        PRESET_MEDIUM = 2
 | 
						|
    };
 | 
						|
 | 
						|
    /** @brief Finest level of the Gaussian pyramid on which the flow is computed (zero level
 | 
						|
        corresponds to the original image resolution). The final flow is obtained by bilinear upscaling.
 | 
						|
        @see setFinestScale */
 | 
						|
    CV_WRAP virtual int getFinestScale() const = 0;
 | 
						|
    /** @copybrief getFinestScale @see getFinestScale */
 | 
						|
    CV_WRAP virtual void setFinestScale(int val) = 0;
 | 
						|
 | 
						|
    /** @brief Size of an image patch for matching (in pixels). Normally, default 8x8 patches work well
 | 
						|
        enough in most cases.
 | 
						|
        @see setPatchSize */
 | 
						|
    CV_WRAP virtual int getPatchSize() const = 0;
 | 
						|
    /** @copybrief getPatchSize @see getPatchSize */
 | 
						|
    CV_WRAP virtual void setPatchSize(int val) = 0;
 | 
						|
 | 
						|
    /** @brief Stride between neighbor patches. Must be less than patch size. Lower values correspond
 | 
						|
        to higher flow quality.
 | 
						|
        @see setPatchStride */
 | 
						|
    CV_WRAP virtual int getPatchStride() const = 0;
 | 
						|
    /** @copybrief getPatchStride @see getPatchStride */
 | 
						|
    CV_WRAP virtual void setPatchStride(int val) = 0;
 | 
						|
 | 
						|
    /** @brief Maximum number of gradient descent iterations in the patch inverse search stage. Higher values
 | 
						|
        may improve quality in some cases.
 | 
						|
        @see setGradientDescentIterations */
 | 
						|
    CV_WRAP virtual int getGradientDescentIterations() const = 0;
 | 
						|
    /** @copybrief getGradientDescentIterations @see getGradientDescentIterations */
 | 
						|
    CV_WRAP virtual void setGradientDescentIterations(int val) = 0;
 | 
						|
 | 
						|
    /** @brief Number of fixed point iterations of variational refinement per scale. Set to zero to
 | 
						|
        disable variational refinement completely. Higher values will typically result in more smooth and
 | 
						|
        high-quality flow.
 | 
						|
    @see setGradientDescentIterations */
 | 
						|
    CV_WRAP virtual int getVariationalRefinementIterations() const = 0;
 | 
						|
    /** @copybrief getGradientDescentIterations @see getGradientDescentIterations */
 | 
						|
    CV_WRAP virtual void setVariationalRefinementIterations(int val) = 0;
 | 
						|
 | 
						|
    /** @brief Weight of the smoothness term
 | 
						|
    @see setVariationalRefinementAlpha */
 | 
						|
    CV_WRAP virtual float getVariationalRefinementAlpha() const = 0;
 | 
						|
    /** @copybrief getVariationalRefinementAlpha @see getVariationalRefinementAlpha */
 | 
						|
    CV_WRAP virtual void setVariationalRefinementAlpha(float val) = 0;
 | 
						|
 | 
						|
    /** @brief Weight of the color constancy term
 | 
						|
    @see setVariationalRefinementDelta */
 | 
						|
    CV_WRAP virtual float getVariationalRefinementDelta() const = 0;
 | 
						|
    /** @copybrief getVariationalRefinementDelta @see getVariationalRefinementDelta */
 | 
						|
    CV_WRAP virtual void setVariationalRefinementDelta(float val) = 0;
 | 
						|
 | 
						|
    /** @brief Weight of the gradient constancy term
 | 
						|
    @see setVariationalRefinementGamma */
 | 
						|
    CV_WRAP virtual float getVariationalRefinementGamma() const = 0;
 | 
						|
    /** @copybrief getVariationalRefinementGamma @see getVariationalRefinementGamma */
 | 
						|
    CV_WRAP virtual void setVariationalRefinementGamma(float val) = 0;
 | 
						|
 | 
						|
 | 
						|
    /** @brief Whether to use mean-normalization of patches when computing patch distance. It is turned on
 | 
						|
        by default as it typically provides a noticeable quality boost because of increased robustness to
 | 
						|
        illumination variations. Turn it off if you are certain that your sequence doesn't contain any changes
 | 
						|
        in illumination.
 | 
						|
    @see setUseMeanNormalization */
 | 
						|
    CV_WRAP virtual bool getUseMeanNormalization() const = 0;
 | 
						|
    /** @copybrief getUseMeanNormalization @see getUseMeanNormalization */
 | 
						|
    CV_WRAP virtual void setUseMeanNormalization(bool val) = 0;
 | 
						|
 | 
						|
    /** @brief Whether to use spatial propagation of good optical flow vectors. This option is turned on by
 | 
						|
        default, as it tends to work better on average and can sometimes help recover from major errors
 | 
						|
        introduced by the coarse-to-fine scheme employed by the DIS optical flow algorithm. Turning this
 | 
						|
        option off can make the output flow field a bit smoother, however.
 | 
						|
    @see setUseSpatialPropagation */
 | 
						|
    CV_WRAP virtual bool getUseSpatialPropagation() const = 0;
 | 
						|
    /** @copybrief getUseSpatialPropagation @see getUseSpatialPropagation */
 | 
						|
    CV_WRAP virtual void setUseSpatialPropagation(bool val) = 0;
 | 
						|
 | 
						|
    /** @brief Creates an instance of DISOpticalFlow
 | 
						|
 | 
						|
    @param preset one of PRESET_ULTRAFAST, PRESET_FAST and PRESET_MEDIUM
 | 
						|
    */
 | 
						|
    CV_WRAP static Ptr<DISOpticalFlow> create(int preset = DISOpticalFlow::PRESET_FAST);
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Class used for calculating a sparse optical flow.
 | 
						|
 | 
						|
The class can calculate an optical flow for a sparse feature set using the
 | 
						|
iterative Lucas-Kanade method with pyramids.
 | 
						|
 | 
						|
@sa calcOpticalFlowPyrLK
 | 
						|
 | 
						|
*/
 | 
						|
class CV_EXPORTS_W SparsePyrLKOpticalFlow : public SparseOpticalFlow
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP virtual Size getWinSize() const = 0;
 | 
						|
    CV_WRAP virtual void setWinSize(Size winSize) = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual int getMaxLevel() const = 0;
 | 
						|
    CV_WRAP virtual void setMaxLevel(int maxLevel) = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
 | 
						|
    CV_WRAP virtual void setTermCriteria(TermCriteria& crit) = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual int getFlags() const = 0;
 | 
						|
    CV_WRAP virtual void setFlags(int flags) = 0;
 | 
						|
 | 
						|
    CV_WRAP virtual double getMinEigThreshold() const = 0;
 | 
						|
    CV_WRAP virtual void setMinEigThreshold(double minEigThreshold) = 0;
 | 
						|
 | 
						|
    CV_WRAP static Ptr<SparsePyrLKOpticalFlow> create(
 | 
						|
            Size winSize = Size(21, 21),
 | 
						|
            int maxLevel = 3, TermCriteria crit =
 | 
						|
            TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
 | 
						|
            int flags = 0,
 | 
						|
            double minEigThreshold = 1e-4);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/** @brief Base abstract class for the long-term tracker
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W Tracker
 | 
						|
{
 | 
						|
protected:
 | 
						|
    Tracker();
 | 
						|
public:
 | 
						|
    virtual ~Tracker();
 | 
						|
 | 
						|
    /** @brief Initialize the tracker with a known bounding box that surrounded the target
 | 
						|
    @param image The initial frame
 | 
						|
    @param boundingBox The initial bounding box
 | 
						|
    */
 | 
						|
    CV_WRAP virtual
 | 
						|
    void init(InputArray image, const Rect& boundingBox) = 0;
 | 
						|
 | 
						|
    /** @brief Update the tracker, find the new most likely bounding box for the target
 | 
						|
    @param image The current frame
 | 
						|
    @param boundingBox The bounding box that represent the new target location, if true was returned, not
 | 
						|
    modified otherwise
 | 
						|
 | 
						|
    @return True means that target was located and false means that tracker cannot locate target in
 | 
						|
    current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
 | 
						|
    missing from the frame (say, out of sight)
 | 
						|
    */
 | 
						|
    CV_WRAP virtual
 | 
						|
    bool update(InputArray image, CV_OUT Rect& boundingBox) = 0;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/** @brief The MIL algorithm trains a classifier in an online manner to separate the object from the
 | 
						|
background.
 | 
						|
 | 
						|
Multiple Instance Learning avoids the drift problem for a robust tracking. The implementation is
 | 
						|
based on @cite MIL .
 | 
						|
 | 
						|
Original code can be found here <http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml>
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W TrackerMIL : public Tracker
 | 
						|
{
 | 
						|
protected:
 | 
						|
    TrackerMIL();  // use ::create()
 | 
						|
public:
 | 
						|
    virtual ~TrackerMIL() CV_OVERRIDE;
 | 
						|
 | 
						|
    struct CV_EXPORTS_W_SIMPLE Params
 | 
						|
    {
 | 
						|
        CV_WRAP Params();
 | 
						|
        //parameters for sampler
 | 
						|
        CV_PROP_RW float samplerInitInRadius;  //!< radius for gathering positive instances during init
 | 
						|
        CV_PROP_RW int samplerInitMaxNegNum;  //!< # negative samples to use during init
 | 
						|
        CV_PROP_RW float samplerSearchWinSize;  //!< size of search window
 | 
						|
        CV_PROP_RW float samplerTrackInRadius;  //!< radius for gathering positive instances during tracking
 | 
						|
        CV_PROP_RW int samplerTrackMaxPosNum;  //!< # positive samples to use during tracking
 | 
						|
        CV_PROP_RW int samplerTrackMaxNegNum;  //!< # negative samples to use during tracking
 | 
						|
        CV_PROP_RW int featureSetNumFeatures;  //!< # features
 | 
						|
    };
 | 
						|
 | 
						|
    /** @brief Create MIL tracker instance
 | 
						|
     *  @param parameters MIL parameters TrackerMIL::Params
 | 
						|
     */
 | 
						|
    static CV_WRAP
 | 
						|
    Ptr<TrackerMIL> create(const TrackerMIL::Params ¶meters = TrackerMIL::Params());
 | 
						|
 | 
						|
    //void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
 | 
						|
    //bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/** @brief the GOTURN (Generic Object Tracking Using Regression Networks) tracker
 | 
						|
 *
 | 
						|
 *  GOTURN (@cite GOTURN) is kind of trackers based on Convolutional Neural Networks (CNN). While taking all advantages of CNN trackers,
 | 
						|
 *  GOTURN is much faster due to offline training without online fine-tuning nature.
 | 
						|
 *  GOTURN tracker addresses the problem of single target tracking: given a bounding box label of an object in the first frame of the video,
 | 
						|
 *  we track that object through the rest of the video. NOTE: Current method of GOTURN does not handle occlusions; however, it is fairly
 | 
						|
 *  robust to viewpoint changes, lighting changes, and deformations.
 | 
						|
 *  Inputs of GOTURN are two RGB patches representing Target and Search patches resized to 227x227.
 | 
						|
 *  Outputs of GOTURN are predicted bounding box coordinates, relative to Search patch coordinate system, in format X1,Y1,X2,Y2.
 | 
						|
 *  Original paper is here: <http://davheld.github.io/GOTURN/GOTURN.pdf>
 | 
						|
 *  As long as original authors implementation: <https://github.com/davheld/GOTURN#train-the-tracker>
 | 
						|
 *  Implementation of training algorithm is placed in separately here due to 3d-party dependencies:
 | 
						|
 *  <https://github.com/Auron-X/GOTURN_Training_Toolkit>
 | 
						|
 *  GOTURN architecture goturn.prototxt and trained model goturn.caffemodel are accessible on opencv_extra GitHub repository.
 | 
						|
 */
 | 
						|
class CV_EXPORTS_W TrackerGOTURN : public Tracker
 | 
						|
{
 | 
						|
protected:
 | 
						|
    TrackerGOTURN();  // use ::create()
 | 
						|
public:
 | 
						|
    virtual ~TrackerGOTURN() CV_OVERRIDE;
 | 
						|
 | 
						|
    struct CV_EXPORTS_W_SIMPLE Params
 | 
						|
    {
 | 
						|
        CV_WRAP Params();
 | 
						|
        CV_PROP_RW std::string modelTxt;
 | 
						|
        CV_PROP_RW std::string modelBin;
 | 
						|
    };
 | 
						|
 | 
						|
    /** @brief Constructor
 | 
						|
    @param parameters GOTURN parameters TrackerGOTURN::Params
 | 
						|
    */
 | 
						|
    static CV_WRAP
 | 
						|
    Ptr<TrackerGOTURN> create(const TrackerGOTURN::Params& parameters = TrackerGOTURN::Params());
 | 
						|
 | 
						|
    //void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
 | 
						|
    //bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
 | 
						|
};
 | 
						|
 | 
						|
class CV_EXPORTS_W TrackerDaSiamRPN : public Tracker
 | 
						|
{
 | 
						|
protected:
 | 
						|
    TrackerDaSiamRPN();  // use ::create()
 | 
						|
public:
 | 
						|
    virtual ~TrackerDaSiamRPN() CV_OVERRIDE;
 | 
						|
 | 
						|
    struct CV_EXPORTS_W_SIMPLE Params
 | 
						|
    {
 | 
						|
        CV_WRAP Params();
 | 
						|
        CV_PROP_RW std::string model;
 | 
						|
        CV_PROP_RW std::string kernel_cls1;
 | 
						|
        CV_PROP_RW std::string kernel_r1;
 | 
						|
        CV_PROP_RW int backend;
 | 
						|
        CV_PROP_RW int target;
 | 
						|
    };
 | 
						|
 | 
						|
    /** @brief Constructor
 | 
						|
    @param parameters DaSiamRPN parameters TrackerDaSiamRPN::Params
 | 
						|
    */
 | 
						|
    static CV_WRAP
 | 
						|
    Ptr<TrackerDaSiamRPN> create(const TrackerDaSiamRPN::Params& parameters = TrackerDaSiamRPN::Params());
 | 
						|
 | 
						|
    /** @brief Return tracking score
 | 
						|
    */
 | 
						|
    CV_WRAP virtual float getTrackingScore() = 0;
 | 
						|
 | 
						|
    //void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
 | 
						|
    //bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
//! @} video_track
 | 
						|
 | 
						|
} // cv
 | 
						|
 | 
						|
#endif
 |