You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
355 lines
13 KiB
C++
355 lines
13 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
//
|
|
// Copyright (C) 2018 Intel Corporation
|
|
|
|
|
|
#ifndef OPENCV_GAPI_OWN_MAT_HPP
|
|
#define OPENCV_GAPI_OWN_MAT_HPP
|
|
|
|
#include <opencv2/gapi/opencv_includes.hpp>
|
|
#include <opencv2/gapi/own/types.hpp>
|
|
#include <opencv2/gapi/own/scalar.hpp>
|
|
#include <opencv2/gapi/own/saturate.hpp>
|
|
#include <opencv2/gapi/own/assert.hpp>
|
|
|
|
#include <memory> //std::shared_ptr
|
|
#include <cstring> //std::memcpy
|
|
#include <numeric> //std::accumulate
|
|
#include <vector>
|
|
#include <opencv2/gapi/util/throw.hpp>
|
|
|
|
namespace cv { namespace gapi { namespace own {
|
|
namespace detail {
|
|
template <typename T, unsigned char channels>
|
|
void assign_row(void* ptr, int cols, Scalar const& s)
|
|
{
|
|
auto p = static_cast<T*>(ptr);
|
|
for (int c = 0; c < cols; c++)
|
|
{
|
|
for (int ch = 0; ch < channels; ch++)
|
|
{
|
|
p[c * channels + ch] = saturate<T>(s[ch], roundd);
|
|
}
|
|
}
|
|
}
|
|
|
|
inline size_t default_step(int type, int cols)
|
|
{
|
|
return CV_ELEM_SIZE(type) * cols;
|
|
}
|
|
//Matrix header, i.e. fields that are unique to each Mat object.
|
|
//Devoted class is needed to implement custom behavior on move (erasing state of moved from object)
|
|
struct MatHeader{
|
|
enum { AUTO_STEP = 0};
|
|
enum { TYPE_MASK = 0x00000FFF };
|
|
|
|
MatHeader() = default;
|
|
|
|
MatHeader(int _rows, int _cols, int type, void* _data, size_t _step)
|
|
: flags((type & TYPE_MASK)), rows(_rows), cols(_cols), data((uchar*)_data), step(_step == AUTO_STEP ? detail::default_step(type, _cols) : _step)
|
|
{}
|
|
|
|
MatHeader(const std::vector<int> &_dims, int type, void* _data)
|
|
: flags((type & TYPE_MASK)), data((uchar*)_data), step(0), dims(_dims)
|
|
{}
|
|
|
|
MatHeader(const MatHeader& ) = default;
|
|
MatHeader(MatHeader&& src) : MatHeader(src) // reuse copy constructor here
|
|
{
|
|
MatHeader empty; //give it a name to call copy(not move) assignment below
|
|
src = empty;
|
|
}
|
|
MatHeader& operator=(const MatHeader& ) = default;
|
|
MatHeader& operator=(MatHeader&& src)
|
|
{
|
|
*this = src; //calling a copy assignment here, not move one
|
|
MatHeader empty; //give it a name to call copy(not move) assignment below
|
|
src = empty;
|
|
return *this;
|
|
}
|
|
/*! includes several bit-fields:
|
|
- depth
|
|
- number of channels
|
|
*/
|
|
int flags = 0;
|
|
|
|
//! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions
|
|
int rows = 0, cols = 0;
|
|
//! pointer to the data
|
|
uchar* data = nullptr;
|
|
size_t step = 0;
|
|
//! dimensions (ND-case)
|
|
std::vector<int> dims;
|
|
};
|
|
} // namespace detail
|
|
//concise version of cv::Mat suitable for GAPI needs (used when no dependence on OpenCV is required)
|
|
class Mat : public detail::MatHeader{
|
|
public:
|
|
|
|
Mat() = default;
|
|
|
|
/** @overload
|
|
@param _rows Number of rows in a 2D array.
|
|
@param _cols Number of columns in a 2D array.
|
|
@param _type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
|
|
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
|
|
@param _data Pointer to the user data. Matrix constructors that take data and step parameters do not
|
|
allocate matrix data. Instead, they just initialize the matrix header that points to the specified
|
|
data, which means that no data is copied. This operation is very efficient and can be used to
|
|
process external data using OpenCV functions. The external data is not automatically deallocated, so
|
|
you should take care of it.
|
|
@param _step Number of bytes each matrix row occupies. The value should include the padding bytes at
|
|
the end of each row, if any. If the parameter is missing (set to AUTO_STEP ), no padding is assumed
|
|
and the actual step is calculated as cols*elemSize(). See Mat::elemSize.
|
|
*/
|
|
Mat(int _rows, int _cols, int _type, void* _data, size_t _step = AUTO_STEP)
|
|
: MatHeader (_rows, _cols, _type, _data, _step)
|
|
{}
|
|
|
|
Mat(const std::vector<int> &_dims, int _type, void* _data)
|
|
: MatHeader (_dims, _type, _data)
|
|
{}
|
|
|
|
Mat(std::vector<int> &&_dims, int _type, void* _data)
|
|
: MatHeader (std::move(_dims), _type, _data)
|
|
{}
|
|
|
|
Mat(Mat const& src, const Rect& roi )
|
|
: Mat(src)
|
|
{
|
|
rows = roi.height;
|
|
cols = roi.width;
|
|
data = ptr(roi.y, roi.x);
|
|
}
|
|
|
|
Mat(Mat const& ) = default;
|
|
Mat(Mat&& ) = default;
|
|
|
|
Mat& operator=(Mat const& ) = default;
|
|
Mat& operator=(Mat&& ) = default;
|
|
|
|
/** @brief Sets all or some of the array elements to the specified value.
|
|
@param s Assigned scalar converted to the actual array type.
|
|
*/
|
|
Mat& operator = (const Scalar& s)
|
|
{
|
|
constexpr unsigned max_channels = 4; //Scalar can't fit more than 4
|
|
using func_p_t = void (*)(void*, int, Scalar const&);
|
|
using detail::assign_row;
|
|
#define TABLE_ENTRY(type) {assign_row<type, 1>, assign_row<type, 2>, assign_row<type, 3>, assign_row<type, 4>}
|
|
static constexpr func_p_t func_tbl[][max_channels] = {
|
|
TABLE_ENTRY(uchar),
|
|
TABLE_ENTRY(schar),
|
|
TABLE_ENTRY(ushort),
|
|
TABLE_ENTRY(short),
|
|
TABLE_ENTRY(int),
|
|
TABLE_ENTRY(float),
|
|
TABLE_ENTRY(double)
|
|
};
|
|
#undef TABLE_ENTRY
|
|
|
|
static_assert(CV_8U == 0 && CV_8S == 1 && CV_16U == 2 && CV_16S == 3
|
|
&& CV_32S == 4 && CV_32F == 5 && CV_64F == 6,
|
|
"OCV type ids used as indexes to array, thus exact numbers are important!"
|
|
);
|
|
|
|
const auto depth = static_cast<unsigned int>(this->depth());
|
|
GAPI_Assert(depth < sizeof(func_tbl)/sizeof(func_tbl[0]));
|
|
|
|
if (dims.empty())
|
|
{
|
|
const auto channels = static_cast<unsigned int>(this->channels());
|
|
GAPI_Assert(channels <= max_channels);
|
|
|
|
auto* f = func_tbl[depth][channels - 1];
|
|
for (int r = 0; r < rows; ++r)
|
|
{
|
|
(*f)(static_cast<void *>(ptr(r)), cols, s );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
auto* f = func_tbl[depth][0];
|
|
// FIXME: better to refactor assign_row to use std::size_t by default
|
|
(*f)(static_cast<void *>(data), static_cast<int>(total()), s);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/** @brief Returns the matrix element size in bytes.
|
|
|
|
The method returns the matrix element size in bytes. For example, if the matrix type is CV_16SC3 ,
|
|
the method returns 3\*sizeof(short) or 6.
|
|
*/
|
|
size_t elemSize() const
|
|
{
|
|
return CV_ELEM_SIZE(type());
|
|
}
|
|
/** @brief Returns the type of a matrix element.
|
|
|
|
The method returns a matrix element type. This is an identifier compatible with the CvMat type
|
|
system, like CV_16SC3 or 16-bit signed 3-channel array, and so on.
|
|
*/
|
|
int type() const {return CV_MAT_TYPE(flags);}
|
|
|
|
/** @brief Returns the depth of a matrix element.
|
|
|
|
The method returns the identifier of the matrix element depth (the type of each individual channel).
|
|
For example, for a 16-bit signed element array, the method returns CV_16S . A complete list of
|
|
matrix types contains the following values:
|
|
- CV_8U - 8-bit unsigned integers ( 0..255 )
|
|
- CV_8S - 8-bit signed integers ( -128..127 )
|
|
- CV_16U - 16-bit unsigned integers ( 0..65535 )
|
|
- CV_16S - 16-bit signed integers ( -32768..32767 )
|
|
- CV_32S - 32-bit signed integers ( -2147483648..2147483647 )
|
|
- CV_32F - 32-bit floating-point numbers ( -FLT_MAX..FLT_MAX, INF, NAN )
|
|
- CV_64F - 64-bit floating-point numbers ( -DBL_MAX..DBL_MAX, INF, NAN )
|
|
*/
|
|
int depth() const {return CV_MAT_DEPTH(flags);}
|
|
|
|
/** @brief Returns the number of matrix channels.
|
|
|
|
The method returns the number of matrix channels.
|
|
If matrix is N-dimensional, -1 is returned.
|
|
*/
|
|
int channels() const {return dims.empty() ? CV_MAT_CN(flags) : -1;}
|
|
|
|
/**
|
|
@param _rows New number of rows.
|
|
@param _cols New number of columns.
|
|
@param _type New matrix type.
|
|
*/
|
|
void create(int _rows, int _cols, int _type)
|
|
{
|
|
create(Size{_cols, _rows}, _type);
|
|
}
|
|
/** @overload
|
|
@param _size Alternative new matrix size specification: Size(cols, rows)
|
|
@param _type New matrix type.
|
|
*/
|
|
void create(Size _size, int _type)
|
|
{
|
|
GAPI_Assert(_size.height >= 0 && _size.width >= 0);
|
|
if (_size != Size{cols, rows} )
|
|
{
|
|
Mat tmp{_size.height, _size.width, _type, nullptr};
|
|
tmp.memory.reset(new uchar[ tmp.step * tmp.rows], [](uchar * p){delete[] p;});
|
|
tmp.data = tmp.memory.get();
|
|
|
|
*this = std::move(tmp);
|
|
}
|
|
}
|
|
|
|
void create(const std::vector<int> &_dims, int _type)
|
|
{
|
|
// FIXME: make a proper reallocation-on-demands
|
|
// WARNING: no tensor views, so no strides
|
|
Mat tmp{_dims, _type, nullptr};
|
|
// FIXME: this accumulate duplicates a lot
|
|
const auto sz = std::accumulate(_dims.begin(), _dims.end(), 1, std::multiplies<int>());
|
|
tmp.memory.reset(new uchar[CV_ELEM_SIZE(_type)*sz], [](uchar * p){delete[] p;});
|
|
tmp.data = tmp.memory.get();
|
|
*this = std::move(tmp);
|
|
}
|
|
|
|
/** @brief Creates a full copy of the matrix and the underlying data.
|
|
|
|
The method creates a full copy of the matrix. The original step[] is not taken into account.
|
|
So, the copy has a continuous buffer occupying total() * elemSize() bytes.
|
|
*/
|
|
Mat clone() const
|
|
{
|
|
Mat m;
|
|
copyTo(m);
|
|
return m;
|
|
}
|
|
|
|
/** @brief Copies the matrix to another one.
|
|
|
|
The method copies the matrix data to another matrix. Before copying the data, the method invokes :
|
|
@code
|
|
m.create(this->size(), this->type());
|
|
@endcode
|
|
so that the destination matrix is reallocated if needed. While m.copyTo(m); works flawlessly, the
|
|
function does not handle the case of a partial overlap between the source and the destination
|
|
matrices.
|
|
*/
|
|
void copyTo(Mat& dst) const
|
|
{
|
|
if (dims.empty())
|
|
{
|
|
dst.create(rows, cols, type());
|
|
for (int r = 0; r < rows; ++r)
|
|
{
|
|
std::copy_n(ptr(r), detail::default_step(type(),cols), dst.ptr(r));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dst.create(dims, depth());
|
|
std::copy_n(data, total()*elemSize(), data);
|
|
}
|
|
}
|
|
|
|
/** @brief Returns true if the array has no elements.
|
|
|
|
The method returns true if Mat::total() is 0 or if Mat::data is NULL. Because of pop_back() and
|
|
resize() methods `M.total() == 0` does not imply that `M.data == NULL`.
|
|
*/
|
|
bool empty() const
|
|
{
|
|
return data == 0 || total() == 0;
|
|
}
|
|
|
|
/** @brief Returns the total number of array elements.
|
|
|
|
The method returns the number of array elements (a number of pixels if the array represents an
|
|
image).
|
|
*/
|
|
size_t total() const
|
|
{
|
|
return dims.empty()
|
|
? (static_cast<std::size_t>(rows) * cols)
|
|
: std::accumulate(dims.begin(), dims.end(), static_cast<std::size_t>(1), std::multiplies<size_t>());
|
|
}
|
|
|
|
/** @overload
|
|
@param roi Extracted submatrix specified as a rectangle.
|
|
*/
|
|
Mat operator()( const Rect& roi ) const
|
|
{
|
|
return Mat{*this, roi};
|
|
}
|
|
|
|
|
|
/** @brief Returns a pointer to the specified matrix row.
|
|
|
|
The methods return `uchar*` or typed pointer to the specified matrix row. See the sample in
|
|
Mat::isContinuous to know how to use these methods.
|
|
@param row Index along the dimension 0
|
|
@param col Index along the dimension 1
|
|
*/
|
|
uchar* ptr(int row, int col = 0)
|
|
{
|
|
return const_cast<uchar*>(const_cast<const Mat*>(this)->ptr(row,col));
|
|
}
|
|
/** @overload */
|
|
const uchar* ptr(int row, int col = 0) const
|
|
{
|
|
return data + step * row + CV_ELEM_SIZE(type()) * col;
|
|
}
|
|
|
|
|
|
private:
|
|
//actual memory allocated for storage, or nullptr if object is non owning view to over memory
|
|
std::shared_ptr<uchar> memory;
|
|
};
|
|
|
|
} //namespace own
|
|
} //namespace gapi
|
|
} //namespace cv
|
|
|
|
#endif /* OPENCV_GAPI_OWN_MAT_HPP */
|