You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
407 lines
13 KiB
C++
407 lines
13 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#ifndef OPENCV_VIDEO_DETAIL_TRACKING_HPP
|
|
#define OPENCV_VIDEO_DETAIL_TRACKING_HPP
|
|
|
|
/*
|
|
* Partially based on:
|
|
* ====================================================================================================================
|
|
* - [AAM] S. Salti, A. Cavallaro, L. Di Stefano, Adaptive Appearance Modeling for Video Tracking: Survey and Evaluation
|
|
* - [AMVOT] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, A. van den Hengel, A Survey of Appearance Models in Visual Object Tracking
|
|
*
|
|
* This Tracking API has been designed with PlantUML. If you modify this API please change UML files under modules/tracking/doc/uml
|
|
*
|
|
*/
|
|
|
|
#include "opencv2/core.hpp"
|
|
|
|
namespace cv {
|
|
namespace detail {
|
|
inline namespace tracking {
|
|
|
|
/** @addtogroup tracking_detail
|
|
@{
|
|
*/
|
|
|
|
/************************************ TrackerFeature Base Classes ************************************/
|
|
|
|
/** @brief Abstract base class for TrackerFeature that represents the feature.
|
|
*/
|
|
class CV_EXPORTS TrackerFeature
|
|
{
|
|
public:
|
|
virtual ~TrackerFeature();
|
|
|
|
/** @brief Compute the features in the images collection
|
|
@param images The images
|
|
@param response The output response
|
|
*/
|
|
void compute(const std::vector<Mat>& images, Mat& response);
|
|
|
|
protected:
|
|
virtual bool computeImpl(const std::vector<Mat>& images, Mat& response) = 0;
|
|
};
|
|
|
|
/** @brief Class that manages the extraction and selection of features
|
|
|
|
@cite AAM Feature Extraction and Feature Set Refinement (Feature Processing and Feature Selection).
|
|
See table I and section III C @cite AMVOT Appearance modelling -\> Visual representation (Table II,
|
|
section 3.1 - 3.2)
|
|
|
|
TrackerFeatureSet is an aggregation of TrackerFeature
|
|
|
|
@sa
|
|
TrackerFeature
|
|
|
|
*/
|
|
class CV_EXPORTS TrackerFeatureSet
|
|
{
|
|
public:
|
|
TrackerFeatureSet();
|
|
|
|
~TrackerFeatureSet();
|
|
|
|
/** @brief Extract features from the images collection
|
|
@param images The input images
|
|
*/
|
|
void extraction(const std::vector<Mat>& images);
|
|
|
|
/** @brief Add TrackerFeature in the collection. Return true if TrackerFeature is added, false otherwise
|
|
@param feature The TrackerFeature class
|
|
*/
|
|
bool addTrackerFeature(const Ptr<TrackerFeature>& feature);
|
|
|
|
/** @brief Get the TrackerFeature collection (TrackerFeature name, TrackerFeature pointer)
|
|
*/
|
|
const std::vector<Ptr<TrackerFeature>>& getTrackerFeatures() const;
|
|
|
|
/** @brief Get the responses
|
|
@note Be sure to call extraction before getResponses Example TrackerFeatureSet::getResponses
|
|
*/
|
|
const std::vector<Mat>& getResponses() const;
|
|
|
|
private:
|
|
void clearResponses();
|
|
bool blockAddTrackerFeature;
|
|
|
|
std::vector<Ptr<TrackerFeature>> features; // list of features
|
|
std::vector<Mat> responses; // list of response after compute
|
|
};
|
|
|
|
/************************************ TrackerSampler Base Classes ************************************/
|
|
|
|
/** @brief Abstract base class for TrackerSamplerAlgorithm that represents the algorithm for the specific
|
|
sampler.
|
|
*/
|
|
class CV_EXPORTS TrackerSamplerAlgorithm
|
|
{
|
|
public:
|
|
virtual ~TrackerSamplerAlgorithm();
|
|
|
|
/** @brief Computes the regions starting from a position in an image.
|
|
|
|
Return true if samples are computed, false otherwise
|
|
|
|
@param image The current frame
|
|
@param boundingBox The bounding box from which regions can be calculated
|
|
|
|
@param sample The computed samples @cite AAM Fig. 1 variable Sk
|
|
*/
|
|
virtual bool sampling(const Mat& image, const Rect& boundingBox, std::vector<Mat>& sample) = 0;
|
|
};
|
|
|
|
/**
|
|
* \brief Class that manages the sampler in order to select regions for the update the model of the tracker
|
|
* [AAM] Sampling e Labeling. See table I and section III B
|
|
*/
|
|
|
|
/** @brief Class that manages the sampler in order to select regions for the update the model of the tracker
|
|
|
|
@cite AAM Sampling e Labeling. See table I and section III B
|
|
|
|
TrackerSampler is an aggregation of TrackerSamplerAlgorithm
|
|
@sa
|
|
TrackerSamplerAlgorithm
|
|
*/
|
|
class CV_EXPORTS TrackerSampler
|
|
{
|
|
public:
|
|
TrackerSampler();
|
|
|
|
~TrackerSampler();
|
|
|
|
/** @brief Computes the regions starting from a position in an image
|
|
@param image The current frame
|
|
@param boundingBox The bounding box from which regions can be calculated
|
|
*/
|
|
void sampling(const Mat& image, Rect boundingBox);
|
|
|
|
/** @brief Return the collection of the TrackerSamplerAlgorithm
|
|
*/
|
|
const std::vector<Ptr<TrackerSamplerAlgorithm>>& getSamplers() const;
|
|
|
|
/** @brief Return the samples from all TrackerSamplerAlgorithm, @cite AAM Fig. 1 variable Sk
|
|
*/
|
|
const std::vector<Mat>& getSamples() const;
|
|
|
|
/** @brief Add TrackerSamplerAlgorithm in the collection. Return true if sampler is added, false otherwise
|
|
@param sampler The TrackerSamplerAlgorithm
|
|
*/
|
|
bool addTrackerSamplerAlgorithm(const Ptr<TrackerSamplerAlgorithm>& sampler);
|
|
|
|
private:
|
|
std::vector<Ptr<TrackerSamplerAlgorithm>> samplers;
|
|
std::vector<Mat> samples;
|
|
bool blockAddTrackerSampler;
|
|
|
|
void clearSamples();
|
|
};
|
|
|
|
/************************************ TrackerModel Base Classes ************************************/
|
|
|
|
/** @brief Abstract base class for TrackerTargetState that represents a possible state of the target.
|
|
|
|
See @cite AAM \f$\hat{x}^{i}_{k}\f$ all the states candidates.
|
|
|
|
Inherits this class with your Target state, In own implementation you can add scale variation,
|
|
width, height, orientation, etc.
|
|
*/
|
|
class CV_EXPORTS TrackerTargetState
|
|
{
|
|
public:
|
|
virtual ~TrackerTargetState() {};
|
|
/** @brief Get the position
|
|
* @return The position
|
|
*/
|
|
Point2f getTargetPosition() const;
|
|
|
|
/** @brief Set the position
|
|
* @param position The position
|
|
*/
|
|
void setTargetPosition(const Point2f& position);
|
|
/** @brief Get the width of the target
|
|
* @return The width of the target
|
|
*/
|
|
int getTargetWidth() const;
|
|
|
|
/** @brief Set the width of the target
|
|
* @param width The width of the target
|
|
*/
|
|
void setTargetWidth(int width);
|
|
/** @brief Get the height of the target
|
|
* @return The height of the target
|
|
*/
|
|
int getTargetHeight() const;
|
|
|
|
/** @brief Set the height of the target
|
|
* @param height The height of the target
|
|
*/
|
|
void setTargetHeight(int height);
|
|
|
|
protected:
|
|
Point2f targetPosition;
|
|
int targetWidth;
|
|
int targetHeight;
|
|
};
|
|
|
|
/** @brief Represents the model of the target at frame \f$k\f$ (all states and scores)
|
|
|
|
See @cite AAM The set of the pair \f$\langle \hat{x}^{i}_{k}, C^{i}_{k} \rangle\f$
|
|
@sa TrackerTargetState
|
|
*/
|
|
typedef std::vector<std::pair<Ptr<TrackerTargetState>, float>> ConfidenceMap;
|
|
|
|
/** @brief Represents the estimate states for all frames
|
|
|
|
@cite AAM \f$x_{k}\f$ is the trajectory of the target up to time \f$k\f$
|
|
|
|
@sa TrackerTargetState
|
|
*/
|
|
typedef std::vector<Ptr<TrackerTargetState>> Trajectory;
|
|
|
|
/** @brief Abstract base class for TrackerStateEstimator that estimates the most likely target state.
|
|
|
|
See @cite AAM State estimator
|
|
|
|
See @cite AMVOT Statistical modeling (Fig. 3), Table III (generative) - IV (discriminative) - V (hybrid)
|
|
*/
|
|
class CV_EXPORTS TrackerStateEstimator
|
|
{
|
|
public:
|
|
virtual ~TrackerStateEstimator();
|
|
|
|
/** @brief Estimate the most likely target state, return the estimated state
|
|
@param confidenceMaps The overall appearance model as a list of :cConfidenceMap
|
|
*/
|
|
Ptr<TrackerTargetState> estimate(const std::vector<ConfidenceMap>& confidenceMaps);
|
|
|
|
/** @brief Update the ConfidenceMap with the scores
|
|
@param confidenceMaps The overall appearance model as a list of :cConfidenceMap
|
|
*/
|
|
void update(std::vector<ConfidenceMap>& confidenceMaps);
|
|
|
|
/** @brief Create TrackerStateEstimator by tracker state estimator type
|
|
@param trackeStateEstimatorType The TrackerStateEstimator name
|
|
|
|
The modes available now:
|
|
|
|
- "BOOSTING" -- Boosting-based discriminative appearance models. See @cite AMVOT section 4.4
|
|
|
|
The modes available soon:
|
|
|
|
- "SVM" -- SVM-based discriminative appearance models. See @cite AMVOT section 4.5
|
|
*/
|
|
static Ptr<TrackerStateEstimator> create(const String& trackeStateEstimatorType);
|
|
|
|
/** @brief Get the name of the specific TrackerStateEstimator
|
|
*/
|
|
String getClassName() const;
|
|
|
|
protected:
|
|
virtual Ptr<TrackerTargetState> estimateImpl(const std::vector<ConfidenceMap>& confidenceMaps) = 0;
|
|
virtual void updateImpl(std::vector<ConfidenceMap>& confidenceMaps) = 0;
|
|
String className;
|
|
};
|
|
|
|
/** @brief Abstract class that represents the model of the target.
|
|
|
|
It must be instantiated by specialized tracker
|
|
|
|
See @cite AAM Ak
|
|
|
|
Inherits this with your TrackerModel
|
|
*/
|
|
class CV_EXPORTS TrackerModel
|
|
{
|
|
public:
|
|
TrackerModel();
|
|
|
|
virtual ~TrackerModel();
|
|
|
|
/** @brief Set TrackerEstimator, return true if the tracker state estimator is added, false otherwise
|
|
@param trackerStateEstimator The TrackerStateEstimator
|
|
@note You can add only one TrackerStateEstimator
|
|
*/
|
|
bool setTrackerStateEstimator(Ptr<TrackerStateEstimator> trackerStateEstimator);
|
|
|
|
/** @brief Estimate the most likely target location
|
|
|
|
@cite AAM ME, Model Estimation table I
|
|
@param responses Features extracted from TrackerFeatureSet
|
|
*/
|
|
void modelEstimation(const std::vector<Mat>& responses);
|
|
|
|
/** @brief Update the model
|
|
|
|
@cite AAM MU, Model Update table I
|
|
*/
|
|
void modelUpdate();
|
|
|
|
/** @brief Run the TrackerStateEstimator, return true if is possible to estimate a new state, false otherwise
|
|
*/
|
|
bool runStateEstimator();
|
|
|
|
/** @brief Set the current TrackerTargetState in the Trajectory
|
|
@param lastTargetState The current TrackerTargetState
|
|
*/
|
|
void setLastTargetState(const Ptr<TrackerTargetState>& lastTargetState);
|
|
|
|
/** @brief Get the last TrackerTargetState from Trajectory
|
|
*/
|
|
Ptr<TrackerTargetState> getLastTargetState() const;
|
|
|
|
/** @brief Get the list of the ConfidenceMap
|
|
*/
|
|
const std::vector<ConfidenceMap>& getConfidenceMaps() const;
|
|
|
|
/** @brief Get the last ConfidenceMap for the current frame
|
|
*/
|
|
const ConfidenceMap& getLastConfidenceMap() const;
|
|
|
|
/** @brief Get the TrackerStateEstimator
|
|
*/
|
|
Ptr<TrackerStateEstimator> getTrackerStateEstimator() const;
|
|
|
|
private:
|
|
void clearCurrentConfidenceMap();
|
|
|
|
protected:
|
|
std::vector<ConfidenceMap> confidenceMaps;
|
|
Ptr<TrackerStateEstimator> stateEstimator;
|
|
ConfidenceMap currentConfidenceMap;
|
|
Trajectory trajectory;
|
|
int maxCMLength;
|
|
|
|
virtual void modelEstimationImpl(const std::vector<Mat>& responses) = 0;
|
|
virtual void modelUpdateImpl() = 0;
|
|
};
|
|
|
|
/************************************ Specific TrackerStateEstimator Classes ************************************/
|
|
|
|
// None
|
|
|
|
/************************************ Specific TrackerSamplerAlgorithm Classes ************************************/
|
|
|
|
/** @brief TrackerSampler based on CSC (current state centered), used by MIL algorithm TrackerMIL
|
|
*/
|
|
class CV_EXPORTS TrackerSamplerCSC : public TrackerSamplerAlgorithm
|
|
{
|
|
public:
|
|
~TrackerSamplerCSC();
|
|
|
|
enum MODE
|
|
{
|
|
MODE_INIT_POS = 1, //!< mode for init positive samples
|
|
MODE_INIT_NEG = 2, //!< mode for init negative samples
|
|
MODE_TRACK_POS = 3, //!< mode for update positive samples
|
|
MODE_TRACK_NEG = 4, //!< mode for update negative samples
|
|
MODE_DETECT = 5 //!< mode for detect samples
|
|
};
|
|
|
|
struct CV_EXPORTS Params
|
|
{
|
|
Params();
|
|
float initInRad; //!< radius for gathering positive instances during init
|
|
float trackInPosRad; //!< radius for gathering positive instances during tracking
|
|
float searchWinSize; //!< size of search window
|
|
int initMaxNegNum; //!< # negative samples to use during init
|
|
int trackMaxPosNum; //!< # positive samples to use during training
|
|
int trackMaxNegNum; //!< # negative samples to use during training
|
|
};
|
|
|
|
/** @brief Constructor
|
|
@param parameters TrackerSamplerCSC parameters TrackerSamplerCSC::Params
|
|
*/
|
|
TrackerSamplerCSC(const TrackerSamplerCSC::Params& parameters = TrackerSamplerCSC::Params());
|
|
|
|
/** @brief Set the sampling mode of TrackerSamplerCSC
|
|
@param samplingMode The sampling mode
|
|
|
|
The modes are:
|
|
|
|
- "MODE_INIT_POS = 1" -- for the positive sampling in initialization step
|
|
- "MODE_INIT_NEG = 2" -- for the negative sampling in initialization step
|
|
- "MODE_TRACK_POS = 3" -- for the positive sampling in update step
|
|
- "MODE_TRACK_NEG = 4" -- for the negative sampling in update step
|
|
- "MODE_DETECT = 5" -- for the sampling in detection step
|
|
*/
|
|
void setMode(int samplingMode);
|
|
|
|
bool sampling(const Mat& image, const Rect& boundingBox, std::vector<Mat>& sample) CV_OVERRIDE;
|
|
|
|
private:
|
|
Params params;
|
|
int mode;
|
|
RNG rng;
|
|
|
|
std::vector<Mat> sampleImage(const Mat& img, int x, int y, int w, int h, float inrad, float outrad = 0, int maxnum = 1000000);
|
|
};
|
|
|
|
//! @}
|
|
|
|
}}} // namespace cv::detail::tracking
|
|
|
|
#endif // OPENCV_VIDEO_DETAIL_TRACKING_HPP
|