You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Cigarette/CigaretteSingle/OpenCV455Simple/include/opencv2/gapi/gcomputation.hpp

581 lines
23 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_GCOMPUTATION_HPP
#define OPENCV_GAPI_GCOMPUTATION_HPP
#include <functional>
#include <opencv2/gapi/util/util.hpp>
#include <opencv2/gapi/gcommon.hpp>
#include <opencv2/gapi/gproto.hpp>
#include <opencv2/gapi/garg.hpp>
#include <opencv2/gapi/gcompiled.hpp>
#include <opencv2/gapi/gstreaming.hpp>
namespace cv {
namespace detail
{
// FIXME: move to algorithm, cover with separate tests
// FIXME: replace with O(1) version (both memory and compilation time)
template<typename...>
struct last_type;
template<typename T>
struct last_type<T> { using type = T;};
template<typename T, typename... Ts>
struct last_type<T, Ts...> { using type = typename last_type<Ts...>::type; };
template<typename... Ts>
using last_type_t = typename last_type<Ts...>::type;
}
// Forward-declare the serialization objects
namespace gapi {
namespace s11n {
struct IIStream;
struct IOStream;
} // namespace s11n
} // namespace gapi
/**
* \addtogroup gapi_main_classes
* @{
*
* @brief G-API classes for constructed and compiled graphs.
*/
/**
* @brief GComputation class represents a captured computation
* graph. GComputation objects form boundaries for expression code
* user writes with G-API, allowing to compile and execute it.
*
* G-API computations are defined with input/output data
* objects. G-API will track automatically which operations connect
* specified outputs to the inputs, forming up a call graph to be
* executed. The below example expresses calculation of Sobel operator
* for edge detection (\f$G = \sqrt{G_x^2 + G_y^2}\f$):
*
* @snippet samples/cpp/tutorial_code/gapi/doc_snippets/api_ref_snippets.cpp graph_def
*
* Full pipeline can be now captured with this object declaration:
*
* @snippet samples/cpp/tutorial_code/gapi/doc_snippets/api_ref_snippets.cpp graph_cap_full
*
* Input/output data objects on which a call graph should be
* reconstructed are passed using special wrappers cv::GIn and
* cv::GOut. G-API will track automatically which operations form a
* path from inputs to outputs and build the execution graph appropriately.
*
* Note that cv::GComputation doesn't take ownership on data objects
* it is defined. Moreover, multiple GComputation objects may be
* defined on the same expressions, e.g. a smaller pipeline which
* expects that image gradients are already pre-calculated may be
* defined like this:
*
* @snippet samples/cpp/tutorial_code/gapi/doc_snippets/api_ref_snippets.cpp graph_cap_sub
*
* The resulting graph would expect two inputs and produce one
* output. In this case, it doesn't matter if gx/gy data objects are
* results of cv::gapi::Sobel operators -- G-API will stop unrolling
* expressions and building the underlying graph one reaching this
* data objects.
*
* The way how GComputation is defined is important as its definition
* specifies graph _protocol_ -- the way how the graph should be
* used. Protocol is defined by number of inputs, number of outputs,
* and shapes of inputs and outputs.
*
* In the above example, sobelEdge expects one Mat on input and
* produces one Mat; while sobelEdgeSub expects two Mats on input and
* produces one Mat. GComputation's protocol defines how other
* computation methods should be used -- cv::GComputation::compile() and
* cv::GComputation::apply(). For example, if a graph is defined on
* two GMat inputs, two cv::Mat objects have to be passed to apply()
* for execution. GComputation checks protocol correctness in runtime
* so passing a different number of objects in apply() or passing
* cv::Scalar instead of cv::Mat there would compile well as a C++
* source but raise an exception in run-time. G-API also comes with a
* typed wrapper cv::GComputationT<> which introduces this type-checking in
* compile-time.
*
* cv::GComputation itself is a thin object which just captures what
* the graph is. The compiled graph (which actually process data) is
* represented by class GCompiled. Use compile() method to generate a
* compiled graph with given compile options. cv::GComputation can
* also be used to process data with implicit graph compilation
* on-the-fly, see apply() for details.
*
* GComputation is a reference-counted object -- once defined, all its
* copies will refer to the same instance.
*
* @sa GCompiled
*/
class GAPI_EXPORTS_W GComputation
{
public:
class Priv;
typedef std::function<GComputation()> Generator;
// Various constructors enable different ways to define a computation: /////
// 1. Generic constructors
/**
* @brief Define a computation using a generator function.
*
* Graph can be defined in-place directly at the moment of its
* construction with a lambda:
*
* @snippet samples/cpp/tutorial_code/gapi/doc_snippets/api_ref_snippets.cpp graph_gen
*
* This may be useful since all temporary objects (cv::GMats) and
* namespaces can be localized to scope of lambda, without
* contaminating the parent scope with probably unnecessary objects
* and information.
*
* @param gen generator function which returns a cv::GComputation,
* see Generator.
*/
GComputation(const Generator& gen); // Generator
// overload
/**
* @brief Generic GComputation constructor.
*
* Constructs a new graph with a given protocol, specified as a
* flow of operations connecting input/output objects. Throws if
* the passed boundaries are invalid, e.g. if there's no
* functional dependency (path) between given outputs and inputs.
*
* @param ins Input data vector.
* @param outs Output data vector.
*
* @note Don't construct GProtoInputArgs/GProtoOutputArgs objects
* directly, use cv::GIn()/cv::GOut() wrapper functions instead.
*
* @sa @ref gapi_data_objects
*/
GAPI_WRAP GComputation(GProtoInputArgs &&ins,
GProtoOutputArgs &&outs); // Arg-to-arg overload
// 2. Syntax sugar and compatibility overloads
/**
* @brief Defines an unary (one input -- one output) computation
*
* @overload
* @param in input GMat of the defined unary computation
* @param out output GMat of the defined unary computation
*/
GAPI_WRAP GComputation(GMat in, GMat out); // Unary overload
/**
* @brief Defines an unary (one input -- one output) computation
*
* @overload
* @param in input GMat of the defined unary computation
* @param out output GScalar of the defined unary computation
*/
GAPI_WRAP GComputation(GMat in, GScalar out); // Unary overload (scalar)
/**
* @brief Defines a binary (two inputs -- one output) computation
*
* @overload
* @param in1 first input GMat of the defined binary computation
* @param in2 second input GMat of the defined binary computation
* @param out output GMat of the defined binary computation
*/
GAPI_WRAP GComputation(GMat in1, GMat in2, GMat out); // Binary overload
/**
* @brief Defines a binary (two inputs -- one output) computation
*
* @overload
* @param in1 first input GMat of the defined binary computation
* @param in2 second input GMat of the defined binary computation
* @param out output GScalar of the defined binary computation
*/
GComputation(GMat in1, GMat in2, GScalar out); // Binary
// overload
// (scalar)
/**
* @brief Defines a computation with arbitrary input/output number.
*
* @overload
* @param ins vector of inputs GMats for this computation
* @param outs vector of outputs GMats for this computation
*
* Use this overload for cases when number of computation
* inputs/outputs is not known in compile-time -- e.g. when graph
* is programmatically generated to build an image pyramid with
* the given number of levels, etc.
*/
GComputation(const std::vector<GMat> &ins, // Compatibility overload
const std::vector<GMat> &outs);
// Various versions of apply(): ////////////////////////////////////////////
// 1. Generic apply()
/**
* @brief Compile graph on-the-fly and immediately execute it on
* the inputs data vectors.
*
* Number of input/output data objects must match GComputation's
* protocol, also types of host data objects (cv::Mat, cv::Scalar)
* must match the shapes of data objects from protocol (cv::GMat,
* cv::GScalar). If there's a mismatch, a run-time exception will
* be generated.
*
* Internally, a cv::GCompiled object is created for the given
* input format configuration, which then is executed on the input
* data immediately. cv::GComputation caches compiled objects
* produced within apply() -- if this method would be called next
* time with the same input parameters (image formats, image
* resolution, etc), the underlying compiled graph will be reused
* without recompilation. If new metadata doesn't match the cached
* one, the underlying compiled graph is regenerated.
*
* @note compile() always triggers a compilation process and
* produces a new GCompiled object regardless if a similar one has
* been cached via apply() or not.
*
* @param ins vector of input data to process. Don't create
* GRunArgs object manually, use cv::gin() wrapper instead.
* @param outs vector of output data to fill results in. cv::Mat
* objects may be empty in this vector, G-API will automatically
* initialize it with the required format & dimensions. Don't
* create GRunArgsP object manually, use cv::gout() wrapper instead.
* @param args a list of compilation arguments to pass to the
* underlying compilation process. Don't create GCompileArgs
* object manually, use cv::compile_args() wrapper instead.
*
* @sa @ref gapi_data_objects, @ref gapi_compile_args
*/
void apply(GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args = {}); // Arg-to-arg overload
/// @private -- Exclude this function from OpenCV documentation
GAPI_WRAP GRunArgs apply(const cv::detail::ExtractArgsCallback &callback,
GCompileArgs &&args = {});
/// @private -- Exclude this function from OpenCV documentation
void apply(const std::vector<cv::Mat>& ins, // Compatibility overload
const std::vector<cv::Mat>& outs,
GCompileArgs &&args = {});
// 2. Syntax sugar and compatibility overloads
#if !defined(GAPI_STANDALONE)
/**
* @brief Execute an unary computation (with compilation on the fly)
*
* @overload
* @param in input cv::Mat for unary computation
* @param out output cv::Mat for unary computation
* @param args compilation arguments for underlying compilation
* process.
*/
void apply(cv::Mat in, cv::Mat &out, GCompileArgs &&args = {}); // Unary overload
/**
* @brief Execute an unary computation (with compilation on the fly)
*
* @overload
* @param in input cv::Mat for unary computation
* @param out output cv::Scalar for unary computation
* @param args compilation arguments for underlying compilation
* process.
*/
void apply(cv::Mat in, cv::Scalar &out, GCompileArgs &&args = {}); // Unary overload (scalar)
/**
* @brief Execute a binary computation (with compilation on the fly)
*
* @overload
* @param in1 first input cv::Mat for binary computation
* @param in2 second input cv::Mat for binary computation
* @param out output cv::Mat for binary computation
* @param args compilation arguments for underlying compilation
* process.
*/
void apply(cv::Mat in1, cv::Mat in2, cv::Mat &out, GCompileArgs &&args = {}); // Binary overload
/**
* @brief Execute an binary computation (with compilation on the fly)
*
* @overload
* @param in1 first input cv::Mat for binary computation
* @param in2 second input cv::Mat for binary computation
* @param out output cv::Scalar for binary computation
* @param args compilation arguments for underlying compilation
* process.
*/
void apply(cv::Mat in1, cv::Mat in2, cv::Scalar &out, GCompileArgs &&args = {}); // Binary overload (scalar)
/**
* @brief Execute a computation with arbitrary number of
* inputs/outputs (with compilation on-the-fly).
*
* @overload
* @param ins vector of input cv::Mat objects to process by the
* computation.
* @param outs vector of output cv::Mat objects to produce by the
* computation.
* @param args compilation arguments for underlying compilation
* process.
*
* Numbers of elements in ins/outs vectors must match numbers of
* inputs/outputs which were used to define this GComputation.
*/
void apply(const std::vector<cv::Mat>& ins, // Compatibility overload
std::vector<cv::Mat>& outs,
GCompileArgs &&args = {});
#endif // !defined(GAPI_STANDALONE)
// Various versions of compile(): //////////////////////////////////////////
// 1. Generic compile() - requires metas to be passed as vector
/**
* @brief Compile the computation for specific input format(s).
*
* This method triggers compilation process and produces a new
* GCompiled object which then can process data of the given
* format. Passing data with different format to the compiled
* computation will generate a run-time exception.
*
* @param in_metas vector of input metadata configuration. Grab
* metadata from real data objects (like cv::Mat or cv::Scalar)
* using cv::descr_of(), or create it on your own.
* @param args compilation arguments for this compilation
* process. Compilation arguments directly affect what kind of
* executable object would be produced, e.g. which kernels (and
* thus, devices) would be used to execute computation.
*
* @return GCompiled, an executable computation compiled
* specifically for the given input parameters.
*
* @sa @ref gapi_compile_args
*/
GCompiled compile(GMetaArgs &&in_metas, GCompileArgs &&args = {});
// 2. Syntax sugar - variadic list of metas, no extra compile args
// FIXME: SFINAE looks ugly in the generated documentation
/**
* @overload
*
* Takes a variadic parameter pack with metadata
* descriptors for which a compiled object needs to be produced.
*
* @return GCompiled, an executable computation compiled
* specifically for the given input parameters.
*/
template<typename... Ts>
auto compile(const Ts&... metas) ->
typename std::enable_if<detail::are_meta_descrs<Ts...>::value, GCompiled>::type
{
return compile(GMetaArgs{GMetaArg(metas)...}, GCompileArgs());
}
// 3. Syntax sugar - variadic list of metas, extra compile args
// (seems optional parameters don't work well when there's an variadic template
// comes first)
//
// Ideally it should look like:
//
// template<typename... Ts>
// GCompiled compile(const Ts&... metas, GCompileArgs &&args)
//
// But not all compilers can handle this (and seems they shouldn't be able to).
// FIXME: SFINAE looks ugly in the generated documentation
/**
* @overload
*
* Takes a variadic parameter pack with metadata
* descriptors for which a compiled object needs to be produced,
* followed by GCompileArgs object representing compilation
* arguments for this process.
*
* @return GCompiled, an executable computation compiled
* specifically for the given input parameters.
*/
template<typename... Ts>
auto compile(const Ts&... meta_and_compile_args) ->
typename std::enable_if<detail::are_meta_descrs_but_last<Ts...>::value
&& std::is_same<GCompileArgs, detail::last_type_t<Ts...> >::value,
GCompiled>::type
{
//FIXME: wrapping meta_and_compile_args into a tuple to unwrap them inside a helper function is the overkill
return compile(std::make_tuple(meta_and_compile_args...),
typename detail::MkSeq<sizeof...(Ts)-1>::type());
}
// FIXME: Document properly in the Doxygen format
// Video-oriented pipeline compilation:
// 1. A generic version
/**
* @brief Compile the computation for streaming mode.
*
* This method triggers compilation process and produces a new
* GStreamingCompiled object which then can process video stream
* data of the given format. Passing a stream in a different
* format to the compiled computation will generate a run-time
* exception.
*
* @param in_metas vector of input metadata configuration. Grab
* metadata from real data objects (like cv::Mat or cv::Scalar)
* using cv::descr_of(), or create it on your own.
*
* @param args compilation arguments for this compilation
* process. Compilation arguments directly affect what kind of
* executable object would be produced, e.g. which kernels (and
* thus, devices) would be used to execute computation.
*
* @return GStreamingCompiled, a streaming-oriented executable
* computation compiled specifically for the given input
* parameters.
*
* @sa @ref gapi_compile_args
*/
GAPI_WRAP GStreamingCompiled compileStreaming(GMetaArgs &&in_metas, GCompileArgs &&args = {});
/**
* @brief Compile the computation for streaming mode.
*
* This method triggers compilation process and produces a new
* GStreamingCompiled object which then can process video stream
* data in any format. Underlying mechanisms will be adjusted to
* every new input video stream automatically, but please note that
* _not all_ existing backends support this (see reshape()).
*
* @param args compilation arguments for this compilation
* process. Compilation arguments directly affect what kind of
* executable object would be produced, e.g. which kernels (and
* thus, devices) would be used to execute computation.
*
* @return GStreamingCompiled, a streaming-oriented executable
* computation compiled for any input image format.
*
* @sa @ref gapi_compile_args
*/
GAPI_WRAP GStreamingCompiled compileStreaming(GCompileArgs &&args = {});
/// @private -- Exclude this function from OpenCV documentation
GAPI_WRAP GStreamingCompiled compileStreaming(const cv::detail::ExtractMetaCallback &callback,
GCompileArgs &&args = {});
// 2. Direct metadata version
/**
* @overload
*
* Takes a variadic parameter pack with metadata
* descriptors for which a compiled object needs to be produced.
*
* @return GStreamingCompiled, a streaming-oriented executable
* computation compiled specifically for the given input
* parameters.
*/
template<typename... Ts>
auto compileStreaming(const Ts&... metas) ->
typename std::enable_if<detail::are_meta_descrs<Ts...>::value, GStreamingCompiled>::type
{
return compileStreaming(GMetaArgs{GMetaArg(metas)...}, GCompileArgs());
}
// 2. Direct metadata + compile arguments version
/**
* @overload
*
* Takes a variadic parameter pack with metadata
* descriptors for which a compiled object needs to be produced,
* followed by GCompileArgs object representing compilation
* arguments for this process.
*
* @return GStreamingCompiled, a streaming-oriented executable
* computation compiled specifically for the given input
* parameters.
*/
template<typename... Ts>
auto compileStreaming(const Ts&... meta_and_compile_args) ->
typename std::enable_if<detail::are_meta_descrs_but_last<Ts...>::value
&& std::is_same<GCompileArgs, detail::last_type_t<Ts...> >::value,
GStreamingCompiled>::type
{
//FIXME: wrapping meta_and_compile_args into a tuple to unwrap them inside a helper function is the overkill
return compileStreaming(std::make_tuple(meta_and_compile_args...),
typename detail::MkSeq<sizeof...(Ts)-1>::type());
}
// Internal use only
/// @private
Priv& priv();
/// @private
const Priv& priv() const;
/// @private
explicit GComputation(cv::gapi::s11n::IIStream &);
/// @private
void serialize(cv::gapi::s11n::IOStream &) const;
protected:
// 4. Helper methods for (3)
/// @private
template<typename... Ts, int... IIs>
GCompiled compile(const std::tuple<Ts...> &meta_and_compile_args, detail::Seq<IIs...>)
{
GMetaArgs meta_args = {GMetaArg(std::get<IIs>(meta_and_compile_args))...};
GCompileArgs comp_args = std::get<sizeof...(Ts)-1>(meta_and_compile_args);
return compile(std::move(meta_args), std::move(comp_args));
}
template<typename... Ts, int... IIs>
GStreamingCompiled compileStreaming(const std::tuple<Ts...> &meta_and_compile_args, detail::Seq<IIs...>)
{
GMetaArgs meta_args = {GMetaArg(std::get<IIs>(meta_and_compile_args))...};
GCompileArgs comp_args = std::get<sizeof...(Ts)-1>(meta_and_compile_args);
return compileStreaming(std::move(meta_args), std::move(comp_args));
}
void recompile(GMetaArgs&& in_metas, GCompileArgs &&args);
/// @private
std::shared_ptr<Priv> m_priv;
};
/** @} */
namespace gapi
{
// FIXME: all these standalone functions need to be added to some
// common documentation section
/**
* @brief Define an tagged island (subgraph) within a computation.
*
* Declare an Island tagged with `name` and defined from `ins` to `outs`
* (exclusively, as ins/outs are data objects, and regioning is done on
* operations level).
* Throws if any operation between `ins` and `outs` are already assigned
* to another island.
*
* Islands allow to partition graph into subgraphs, fine-tuning
* the way it is scheduled by the underlying executor.
*
* @param name name of the Island to create
* @param ins vector of input data objects where the subgraph
* begins
* @param outs vector of output data objects where the subgraph
* ends.
*
* The way how an island is defined is similar to how
* cv::GComputation is defined on input/output data objects.
* Same rules apply here as well -- if there's no functional
* dependency between inputs and outputs or there's not enough
* input data objects were specified to properly calculate all
* outputs, an exception is thrown.
*
* Use cv::GIn() / cv::GOut() to specify input/output vectors.
*/
void GAPI_EXPORTS island(const std::string &name,
GProtoInputArgs &&ins,
GProtoOutputArgs &&outs);
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_GCOMPUTATION_HPP